2000
Multivalent Binding of Nonnative Substrate Proteins by the Chaperonin GroEL
Farr G, Furtak K, Rowland M, Ranson N, Saibil H, Kirchhausen T, Horwich A. Multivalent Binding of Nonnative Substrate Proteins by the Chaperonin GroEL. Cell 2000, 100: 561-573. PMID: 10721993, DOI: 10.1016/s0092-8674(00)80692-3.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAnimalsBacterial ProteinsBinding SitesCattleChaperonin 10Chaperonin 60Chemical PhenomenaChemistry, PhysicalCryoelectron MicroscopyCystineEscherichia coliEthylmaleimideImage Processing, Computer-AssistedMacromolecular SubstancesMalate DehydrogenaseModels, MolecularPeptidesProtein BindingProtein ConformationProtein FoldingProtein Structure, TertiaryRibulose-Bisphosphate CarboxylaseStructure-Activity RelationshipThiosulfate SulfurtransferaseConceptsNonnative substrate proteinApical domainSubstrate proteinsChaperonin GroELWild-type domainCross-linking experimentsCochaperonin GroESNonnative proteinsProductive foldingGroEL ringSingle polypeptideHydrophobic residuesMalate dehydrogenaseBinary complex formationRubiscoProteinInside aspectMultivalent bindingGroELCentral cavityComplex formationBindingDomainGroESOpen ring
1997
The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperonin complex
Xu Z, Horwich A, Sigler P. The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperonin complex. Nature 1997, 388: 741-750. PMID: 9285585, DOI: 10.1038/41944.Peer-Reviewed Original ResearchConceptsGroEL-GroESApical domainCis ringMulti-subunit protein assembliesCo-chaperonin GroESRings of subunitsPeptide-binding residuesChaperonin complexConsumption of ATPProtein foldingGroEL subunitProtein assembliesTrans ringAllosteric mechanismGroESEquatorial domainBloc movementDouble toroidSecond GroESEscherichia coliOutward tiltAsymmetric intermediatesCentral cavitySubunitsInward tilt
1996
Characterization of the Active Intermediate of a GroEL–GroES-Mediated Protein Folding Reaction
Weissman J, Rye H, Fenton W, Beechem J, Horwich A. Characterization of the Active Intermediate of a GroEL–GroES-Mediated Protein Folding Reaction. Cell 1996, 84: 481-490. PMID: 8608602, DOI: 10.1016/s0092-8674(00)81293-3.Peer-Reviewed Original ResearchConceptsCis ternary complexProtein foldingRelease of GroESAddition of GroESFolding reactionTernary complexNonhydrolyzable ATP analogGroES releaseProtein folding reactionSubstrate proteinsPresence of ATPGroEL mutantGroEL-GroESGroEL complexNonnative substratesATP hydrolysisGroESComplete foldingSubstrate flexibilityATP analogFoldingFluorescence anisotropyActive stateATPRecent studies
1993
Protein folding in the cell: functions of two families of molecular chaperone, hsp 60 and TF55-TCP1
Horwich A, Willison K. Protein folding in the cell: functions of two families of molecular chaperone, hsp 60 and TF55-TCP1. Philosophical Transactions Of The Royal Society B Biological Sciences 1993, 339: 313-326. PMID: 8098536, DOI: 10.1098/rstb.1993.0030.Peer-Reviewed Original Research
1992
TCP1 complex is a molecular chaperone in tubulin biogenesis
Yaffe M, Farr G, Miklos D, Horwich A, Sternlicht M, Sternlicht H. TCP1 complex is a molecular chaperone in tubulin biogenesis. Nature 1992, 358: 245-248. PMID: 1630491, DOI: 10.1038/358245a0.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAnimalsCycloheximideDNA-Binding ProteinsIntracellular Signaling Peptides and ProteinsKineticsMacromolecular SubstancesMicrotubule-Associated ProteinsMolecular WeightNuclear ProteinsProtein BiosynthesisProtein ConformationRabbitsReticulocytesRNA, MessengerT-Complex Genome RegionTubulinUbiquitin-Protein LigasesConceptsReticulocyte lysateTubulin subunitsCytosol of eukaryotesComplex polypeptide 1Protease-sensitive conformationRabbit reticulocyte lysateCytosolic chaperonesTubulin biogenesisMajor cytosolic proteinMolecular chaperonesTCP1 complexK proteinCytosolic proteinsΒ heterodimerBiogenesisPolypeptide 1Β-tubulinProteinSubunitsChaperonesMg-ATPK-complexesMolecular targetsNonhydrolysable analogueTubulin
1987
Import and processing of human ornithine transcarbamoylase precursor by mitochondria from Saccharomyces cerevisiae.
Cheng M, Pollock R, Hendrick J, Horwich A. Import and processing of human ornithine transcarbamoylase precursor by mitochondria from Saccharomyces cerevisiae. Proceedings Of The National Academy Of Sciences Of The United States Of America 1987, 84: 4063-4067. PMID: 3295876, PMCID: PMC305022, DOI: 10.1073/pnas.84.12.4063.Peer-Reviewed Original ResearchConceptsMitochondrial membraneEnzymatic activityNH2-terminal leader peptideMitochondrial matrix fractionWild-type precursorS. cerevisiae strainMitochondrial importMammalian mitochondriaMature subunitSubunit precursorOperon promoterS. cerevisiaeSelective growth conditionsLeader peptideYeast cellsArtificial mutationsOTCase activityMatrix fractionOrnithine transcarbamoylaseCerevisiae strainSaccharomycesGrowth conditionsMatrix compartmentMitochondriaSubunits