2023
Application of novel PACS-based informatics platform to identify imaging based predictors of CDKN2A allelic status in glioblastomas
Tillmanns N, Lost J, Tabor J, Vasandani S, Vetsa S, Marianayagam N, Yalcin K, Erson-Omay E, von Reppert M, Jekel L, Merkaj S, Ramakrishnan D, Avesta A, de Oliveira Santo I, Jin L, Huttner A, Bousabarah K, Ikuta I, Lin M, Aneja S, Turowski B, Aboian M, Moliterno J. Application of novel PACS-based informatics platform to identify imaging based predictors of CDKN2A allelic status in glioblastomas. Scientific Reports 2023, 13: 22942. PMID: 38135704, PMCID: PMC10746716, DOI: 10.1038/s41598-023-48918-4.Peer-Reviewed Original ResearchConceptsInformatics platformDeep learning algorithmsImaging featuresCDKN2A alterationsLearning algorithmHeterozygous lossHomozygous deletionLarge datasetsDeep white matter invasionGBM molecular subtypesNew informaticsQualitative imaging biomarkersWhole-exome sequencingQualitative imaging featuresGBM resectionRadiographic evidenceWorse prognosisPACSMolecular subtypesPial invasionImaging biomarkersCDKN2A mutationsAllele statusNoninvasive identificationMagnetic resonance imagesSystematic Literature Review of Machine Learning Algorithms Using Pretherapy Radiologic Imaging for Glioma Molecular Subtype Prediction
Lost J, Verma T, Jekel L, von Reppert M, Tillmanns N, Merkaj S, Petersen G, Bahar R, Gordem A, Haider M, Subramanian H, Brim W, Ikuta I, Omuro A, Conte G, Marquez-Nostra B, Avesta A, Bousabarah K, Nabavizadeh A, Kazerooni A, Aneja S, Bakas S, Lin M, Sabel M, Aboian M. Systematic Literature Review of Machine Learning Algorithms Using Pretherapy Radiologic Imaging for Glioma Molecular Subtype Prediction. American Journal Of Neuroradiology 2023, 44: 1126-1134. PMID: 37770204, PMCID: PMC10549943, DOI: 10.3174/ajnr.a8000.Peer-Reviewed Original ResearchPredicting tumor recurrence on baseline MR imaging in patients with early-stage hepatocellular carcinoma using deep machine learning
Kucukkaya A, Zeevi T, Chai N, Raju R, Haider S, Elbanan M, Petukhova-Greenstein A, Lin M, Onofrey J, Nowak M, Cooper K, Thomas E, Santana J, Gebauer B, Mulligan D, Staib L, Batra R, Chapiro J. Predicting tumor recurrence on baseline MR imaging in patients with early-stage hepatocellular carcinoma using deep machine learning. Scientific Reports 2023, 13: 7579. PMID: 37165035, PMCID: PMC10172370, DOI: 10.1038/s41598-023-34439-7.Peer-Reviewed Original Research
2021
OTHR-12. The development of machine learning algorithms for the differentiation of glioma and brain metastases – a systematic review
Brim W, Jekel L, Petersen G, Subramanian H, Zeevi T, Payabvash S, Bousabarah K, Lin M, Cui J, Brackett A, Mahajan A, Johnson M, Mahajan A, Aboian M. OTHR-12. The development of machine learning algorithms for the differentiation of glioma and brain metastases – a systematic review. Neuro-Oncology Advances 2021, 3: iii17-iii17. PMCID: PMC8351249, DOI: 10.1093/noajnl/vdab071.067.Peer-Reviewed Original ResearchConvolutional neural networkDeep learningML algorithmsMachine Learning AlgorithmsApplication of machineClassical ML algorithmsDevelopment of machineSupport vector machine algorithmVector machine algorithmArtificial intelligenceMachine learningSearch strategyDL modelsLearning algorithmFeature extractionNeural networkMachine algorithmAverage accuracyML methodsCML algorithmAlgorithmHigh accuracyLearningMachineAccuracy