2024
Renal Angptl4 is a key fibrogenic molecule in progressive diabetic kidney disease
Srivastava S, Zhou H, Shenoi R, Morris M, Lainez-Mas B, Goedeke L, Rajendran B, Setia O, Aryal B, Kanasaki K, Koya D, Inoki K, Dardik A, Bell T, Fernández-Hernando C, Shulman G, Goodwin J. Renal Angptl4 is a key fibrogenic molecule in progressive diabetic kidney disease. Science Advances 2024, 10: eadn6068. PMID: 39630889, PMCID: PMC11616692, DOI: 10.1126/sciadv.adn6068.Peer-Reviewed Original ResearchConceptsAngiopoietin-like 4Diabetic kidney diseaseIntegrin B1Fibrogenic moleculesMutant miceSTING pathway activationIncreased fatty acid oxidationProgressive diabetic kidney diseaseDiabetic kidneyKidney diseaseReduced epithelial-to-mesenchymal transitionEpithelial-to-mesenchymal transitionFatty acid oxidationExpression of pro-inflammatory cytokinesTargeted pharmacological therapiesGene expressionMitochondrial damageEndothelial-to-mesenchymal transitionPro-inflammatory cytokinesPathway activationPharmacological therapyControl miceIntegrinAcid oxidationFibrogenic phenotypeAbstract 129: Hypercholesterolemia-induced Lxr Signaling In Smc Contributes To Atherosclerotic Lesion Remodeling And Regulates Vascular And Visceral Smc Function
Zhang H, Biwer L, de Urturi D, Fernandez-Tussy P, Jovin D, Huang Y, Zhang X, Esplugues E, Greif D, Suarez Y, Fernandez-Hernando C. Abstract 129: Hypercholesterolemia-induced Lxr Signaling In Smc Contributes To Atherosclerotic Lesion Remodeling And Regulates Vascular And Visceral Smc Function. Arteriosclerosis Thrombosis And Vascular Biology 2024, 44: a129-a129. DOI: 10.1161/atvb.44.suppl_1.129.Peer-Reviewed Original ResearchLiver X receptorTranscription factorsVascular smooth muscle cellsRegulation of lipid metabolismLXR signalingB geneScRNA-seqFate decisionsSignaling eventsSMC functionGene expressionActivation of liver X receptorCell statesLesion remodelingCharacterized miceLipid metabolismLineage tracingPhenotypic switchingX receptorReduced fibrous cap thicknessTranscriptionFeatures of plaque instabilitySmooth muscle cellsLipid absorptionProgression of atherosclerosis
2022
Macrophage-Derived 25-Hydroxycholesterol Promotes Vascular Inflammation, Atherogenesis, and Lesion Remodeling
Canfrán-Duque A, Rotllan N, Zhang X, Andrés-Blasco I, Thompson B, Sun J, Price N, Fernández-Fuertes M, Fowler J, Gómez-Coronado D, Sessa W, Giannarelli C, Schneider R, Tellides G, McDonald J, Fernández-Hernando C, Suárez Y. Macrophage-Derived 25-Hydroxycholesterol Promotes Vascular Inflammation, Atherogenesis, and Lesion Remodeling. Circulation 2022, 147: 388-408. PMID: 36416142, PMCID: PMC9892282, DOI: 10.1161/circulationaha.122.059062.Peer-Reviewed Original ResearchConceptsLipid-loaded macrophagesLineage-tracing mouse modelsSREBP transcriptional activityCholesterol biosynthetic intermediatesWestern diet feedingAccessible cholesterolDifferent macrophage populationsTranscriptomic analysisKey immune regulatorsPlasma membraneAtherosclerosis progressionImmune activationTranscriptional activityGene expressionDiet feedingInflammatory responseMouse bone marrowLiver X receptorBiosynthetic intermediatesSterol metabolismApoptosis susceptibilityToll-like receptor 4Proinflammatory gene expressionHuman coronary atherosclerotic lesionsMouse atherosclerotic plaques
2021
MMAB promotes negative feedback control of cholesterol homeostasis
Goedeke L, Canfrán-Duque A, Rotllan N, Chaube B, Thompson BM, Lee RG, Cline GW, McDonald JG, Shulman GI, Lasunción MA, Suárez Y, Fernández-Hernando C. MMAB promotes negative feedback control of cholesterol homeostasis. Nature Communications 2021, 12: 6448. PMID: 34750386, PMCID: PMC8575900, DOI: 10.1038/s41467-021-26787-7.Peer-Reviewed Original ResearchMeSH KeywordsAlkyl and Aryl TransferasesAnimalsCell Line, TumorCholesterolCholesterol, LDLFeedback, PhysiologicalGene Expression ProfilingHeLa CellsHep G2 CellsHomeostasisHumansHydroxymethylglutaryl CoA ReductasesLiverMice, Inbred C57BLMice, KnockoutPromoter Regions, GeneticReceptors, LDLRNA InterferenceSterol Regulatory Element Binding Protein 2ConceptsCholesterol biosynthesisCholesterol homeostasisMouse hepatic cell lineIntegrative genomic strategyIntricate regulatory networkMaster transcriptional regulatorCellular cholesterol levelsHMGCR activityLDL-cholesterol uptakeCholesterol levelsHuman hepatic cellsSterol contentGenomic strategiesTranscriptional regulatorsRegulatory networksIntracellular cholesterol levelsGene expressionUnexpected roleHepatic cell linesBiosynthesisMMABIntracellular levelsCell linesHomeostasisExpression of SREBP2MicroRNA regulation of cholesterol metabolism
Citrin KM, Fernández‐Hernando C, Suárez Y. MicroRNA regulation of cholesterol metabolism. Annals Of The New York Academy Of Sciences 2021, 1495: 55-77. PMID: 33521946, PMCID: PMC8938903, DOI: 10.1111/nyas.14566.Peer-Reviewed Original ResearchConceptsDifferent cell typesCell typesMultiple mRNA targetsCholesterol homeostasisSmall noncoding RNAsMicroRNA activityCholesterol-laden cellsMicroRNA regulationCholesterol metabolismMRNA targetsNoncoding RNAsPosttranscriptional levelGene expressionSpecialized functionsMicroRNAsCurrent knowledgeTarget interactionsHomeostasisMetabolismPathwayExpressionMultiple stagesRNARegulationDistinctive effects
2017
Lanosterol Modulates TLR4-Mediated Innate Immune Responses in Macrophages
Araldi E, Fernández-Fuertes M, Canfrán-Duque A, Tang W, Cline GW, Madrigal-Matute J, Pober JS, Lasunción MA, Wu D, Fernández-Hernando C, Suárez Y. Lanosterol Modulates TLR4-Mediated Innate Immune Responses in Macrophages. Cell Reports 2017, 19: 2743-2755. PMID: 28658622, PMCID: PMC5553565, DOI: 10.1016/j.celrep.2017.05.093.Peer-Reviewed Original ResearchConceptsToll-like receptor 4Activator of transcriptionCholesterol biosynthetic pathwayTranscriptional repressionBiosynthetic pathwayLanosterol accumulationGene productsSterol intermediatesSignal transducerGene expressionSelective regulatorSTAT2 activationInnate immune responseType I interferonConditional disruptionCritical functionsMembrane fluidityROS productionMacrophage immunityListeria monocytogenes infectionResistance of miceMouse macrophagesInnate immunityI interferonCYP51A1
2016
ANGPTL4 deficiency in haematopoietic cells promotes monocyte expansion and atherosclerosis progression
Aryal B, Rotllan N, Araldi E, Ramírez CM, He S, Chousterman BG, Fenn AM, Wanschel A, Madrigal-Matute J, Warrier N, Martín-Ventura JL, Swirski FK, Suárez Y, Fernández-Hernando C. ANGPTL4 deficiency in haematopoietic cells promotes monocyte expansion and atherosclerosis progression. Nature Communications 2016, 7: 12313. PMID: 27460411, PMCID: PMC4974469, DOI: 10.1038/ncomms12313.Peer-Reviewed Original ResearchMeSH KeywordsAngiopoietin-Like Protein 4AnimalsApoptosisAtherosclerosisBone Marrow TransplantationCell ProliferationCell SurvivalDisease ProgressionFoam CellsHematopoietic Stem CellsHumansInflammationLeukocytosisMacrophagesMaleMiceMice, Inbred C57BLModels, BiologicalMonocytesMyeloid Progenitor CellsPlaque, AtheroscleroticConceptsFoam cell formationMyeloid progenitor cell expansionANGPTL4 deficiencyCell formationMacrophage gene expressionLipid raft contentMyeloid progenitor populationsProgenitor cell expansionUpregulated genesProgenitor populationsGene expressionHaematopoietic cellsCell surfaceMacrophage apoptosisCell expansionCells resultsProtein 4Lipid accumulationCD36 expressionLike protein 4ExpressionProfound effectMacrophagesGenesLarger atherosclerotic plaques
2015
Dietary lipids modulate the expression of miR‐107, an miRNA that regulates the circadian system
Daimiel‐Ruiz L, Klett‐Mingo M, Konstantinidou V, Micó V, Aranda JF, García B, Martínez‐Botas J, Dávalos A, Fernández‐Hernando C, Ordovás JM. Dietary lipids modulate the expression of miR‐107, an miRNA that regulates the circadian system. Molecular Nutrition & Food Research 2015, 59: 552-565. PMID: 25522185, PMCID: PMC4591752, DOI: 10.1002/mnfr.201400616.Peer-Reviewed Original ResearchConceptsCardiovascular diseaseMiR-107Cardio-protective effectsType 2 diabetesUnhealthy dietary habitsCircadian rhythmCaco-2 cellsCVD riskConjugated linoleic acidPharmacological treatmentProtective effectDietary habitsMetabolic disordersDietary lipidsPutative target genesDocosahexanoic acidRelevant transcription factorsMultiple metabolic pathwaysRole of miRNAsOwn promoterTranscription factorsTarget genesDiseaseGene resultsGene expression
2010
microRNAs, Plasma Lipids, and Cardiovascular Disease
Dávalos A, Fernández-Hernando C. microRNAs, Plasma Lipids, and Cardiovascular Disease. Current Cardiovascular Risk Reports 2010, 5: 10-17. DOI: 10.1007/s12170-010-0145-1.Peer-Reviewed Original ResearchCardiovascular diseaseShort non-coding RNAsPost-transcriptional repressionHigh-density lipoprotein biogenesisMiR-33Non-coding RNAsTotal cholesterol levelsCassette transporter A1Expression of ATPMiR-122 expressionAberrant regulationGene expressionLipoprotein biogenesisDyslipidemic patientsLipid homeostasisMetabolic syndromePlasma lipidsCholesterol levelsLeading causeLipoprotein metabolismABCG1 transportersCholesterol effluxCholesterol metabolismPathologic processesMultifactorial disorder
2007
Dicer Dependent MicroRNAs Regulate Gene Expression and Functions in Human Endothelial Cells
Suárez Y, Fernández-Hernando C, Pober JS, Sessa WC. Dicer Dependent MicroRNAs Regulate Gene Expression and Functions in Human Endothelial Cells. Circulation Research 2007, 100: 1164-1173. PMID: 17379831, DOI: 10.1161/01.res.0000265065.26744.17.Peer-Reviewed Original ResearchConceptsGene expressionHuman endothelial cellsEndogenous miRNA levelsImportance of miRNAsMaturation of microRNAsEC gene expressionEndothelial cellsTek/TieKnockdown of DicerDICER-dependent microRNAsRole of DicerMiRNA expression profilesKDR/VEGFR2MiR-222/221Dicer knockdownDependent microRNAsSynthase protein levelsDicerKey regulatorExpression profilesKey enzymePhysiological pathwaysCord formationEndothelial biologyMiRNAs