2018
Angptl8 antisense oligonucleotide improves adipose lipid metabolism and prevents diet-induced NAFLD and hepatic insulin resistance in rodents
Vatner DF, Goedeke L, Camporez JG, Lyu K, Nasiri AR, Zhang D, Bhanot S, Murray SF, Still CD, Gerhard GS, Shulman GI, Samuel VT. Angptl8 antisense oligonucleotide improves adipose lipid metabolism and prevents diet-induced NAFLD and hepatic insulin resistance in rodents. Diabetologia 2018, 61: 1435-1446. PMID: 29497783, PMCID: PMC5940564, DOI: 10.1007/s00125-018-4579-1.Peer-Reviewed Original ResearchMeSH KeywordsAdipose TissueAngiopoietin-Like Protein 8Angiopoietin-like ProteinsAnimalsBody CompositionCalorimetry, IndirectDiet, High-FatGlucose Tolerance TestInsulin ResistanceLipid MetabolismMaleMiceMice, Inbred C57BLNon-alcoholic Fatty Liver DiseaseOligonucleotides, AntisensePeptide HormonesRatsRats, Sprague-DawleyConceptsHepatic insulin resistanceAdipose tissue lipoprotein lipaseInsulin resistanceEctopic lipid accumulationTissue lipoprotein lipaseAdipose tissueLipid uptakeTolerance testFed miceNon-alcoholic fatty liver diseaseAntisense oligonucleotideMixed meal tolerance testLipoprotein lipaseLipid accumulationDiet-induced NAFLDBariatric surgery patientsFatty liver diseaseHyperinsulinaemic euglycaemic clampMeal tolerance testSecond-generation antisense oligonucleotideAmeliorate insulin resistanceType 2 diabetesLipid-induced hepatic insulin resistanceLipoprotein lipase inhibitorWhite adipose tissue
2010
Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice
Ayala JE, Consortium F, Samuel V, Morton G, Obici S, Croniger C, Shulman G, Wasserman D, McGuinness O. Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice. Disease Models & Mechanisms 2010, 3: 525-534. PMID: 20713647, PMCID: PMC2938392, DOI: 10.1242/dmm.006239.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlood GlucoseCatheterizationDiagnostic Techniques, EndocrineFastingGlucoseGlucose Tolerance TestHomeostasisHyperglycemiaInsulinMiceModels, AnimalPhenotype
2001
Disruption of Sur2-containing KATP channels enhances insulin-stimulated glucose uptake in skeletal muscle
Chutkow W, Samuel V, Hansen P, Pu J, Valdivia C, Makielski J, Burant C. Disruption of Sur2-containing KATP channels enhances insulin-stimulated glucose uptake in skeletal muscle. Proceedings Of The National Academy Of Sciences Of The United States Of America 2001, 98: 11760-11764. PMID: 11562480, PMCID: PMC58803, DOI: 10.1073/pnas.201390398.Peer-Reviewed Original ResearchMeSH KeywordsAnalysis of VarianceAnimalsATP-Binding Cassette TransportersBiological TransportBlood GlucoseDeoxyglucoseExonsGlucoseGlucose Clamp TechniqueGlucose Tolerance TestGlucose Transporter Type 4InsulinIntronsMiceMice, KnockoutMonosaccharide Transport ProteinsMuscle ProteinsMuscle, SkeletalPolymerase Chain ReactionPotassium ChannelsPotassium Channels, Inwardly RectifyingReceptors, DrugRNA, MessengerSignal TransductionSodium-Potassium-Exchanging ATPaseSulfonylurea ReceptorsTriglyceridesWeight GainConceptsSkeletal muscleInsulin-stimulated glucose transportGene-targeting strategiesGlucose uptake mechanismsInsulin-stimulated glucose uptakeHomozygous null miceRegulatory subunitInsertional mutagenesisWild typeEnhanced glucose useProtection of tissuesDiverse arrayGlucose transportChannel activityUptake mechanismNull miceATP-sensitive potassium channelsPotassium channelsGlucose uptakeMembrane excitabilityFuture therapeutic approachesWild-type littermatesTarget blood glucose levelsInsulin actionPhysiologic function