2015
Insulin-independent regulation of hepatic triglyceride synthesis by fatty acids
Vatner DF, Majumdar SK, Kumashiro N, Petersen MC, Rahimi Y, Gattu AK, Bears M, Camporez JP, Cline GW, Jurczak MJ, Samuel VT, Shulman GI. Insulin-independent regulation of hepatic triglyceride synthesis by fatty acids. Proceedings Of The National Academy Of Sciences Of The United States Of America 2015, 112: 1143-1148. PMID: 25564660, PMCID: PMC4313795, DOI: 10.1073/pnas.1423952112.Peer-Reviewed Original Research
2013
Thyroid hormone receptor-β agonists prevent hepatic steatosis in fat-fed rats but impair insulin sensitivity via discrete pathways
Vatner DF, Weismann D, Beddow SA, Kumashiro N, Erion DM, Liao XH, Grover GJ, Webb P, Phillips KJ, Weiss RE, Bogan JS, Baxter J, Shulman GI, Samuel VT. Thyroid hormone receptor-β agonists prevent hepatic steatosis in fat-fed rats but impair insulin sensitivity via discrete pathways. AJP Endocrinology And Metabolism 2013, 305: e89-e100. PMID: 23651850, PMCID: PMC3725564, DOI: 10.1152/ajpendo.00573.2012.Peer-Reviewed Original ResearchMeSH KeywordsAcetatesAnilidesAnimalsDietary FatsFatty LiverGene ExpressionGluconeogenesisGlucose Transporter Type 4HyperglycemiaHyperinsulinismInsulin ResistanceMaleMuscle, SkeletalNon-alcoholic Fatty Liver DiseasePhenolsRatsRats, Sprague-DawleySignal TransductionThyroid Hormone Receptors betaTriglyceridesConceptsEndogenous glucose productionHepatic insulin sensitivityInsulin sensitivityHepatic steatosisFat-fed ratsInsulin-stimulated peripheral glucose disposalTRβ agonistsInsulin-stimulated skeletal muscle glucose uptakePotent lipid-lowering drugsNonalcoholic fatty liver diseaseWhite adipose tissue lipolysisMale Sprague-Dawley ratsSkeletal muscle glucose uptakeGC-1 treatmentPeripheral glucose disposalFatty liver diseaseImpairs insulin sensitivityLipid-lowering drugsHepatic triglyceride contentAdipose tissue lipolysisMuscle glucose uptakeSprague-Dawley ratsHepatic insulin resistanceSkeletal muscle insulinPotential adverse effects
2001
Disruption of Sur2-containing KATP channels enhances insulin-stimulated glucose uptake in skeletal muscle
Chutkow W, Samuel V, Hansen P, Pu J, Valdivia C, Makielski J, Burant C. Disruption of Sur2-containing KATP channels enhances insulin-stimulated glucose uptake in skeletal muscle. Proceedings Of The National Academy Of Sciences Of The United States Of America 2001, 98: 11760-11764. PMID: 11562480, PMCID: PMC58803, DOI: 10.1073/pnas.201390398.Peer-Reviewed Original ResearchMeSH KeywordsAnalysis of VarianceAnimalsATP-Binding Cassette TransportersBiological TransportBlood GlucoseDeoxyglucoseExonsGlucoseGlucose Clamp TechniqueGlucose Tolerance TestGlucose Transporter Type 4InsulinIntronsMiceMice, KnockoutMonosaccharide Transport ProteinsMuscle ProteinsMuscle, SkeletalPolymerase Chain ReactionPotassium ChannelsPotassium Channels, Inwardly RectifyingReceptors, DrugRNA, MessengerSignal TransductionSodium-Potassium-Exchanging ATPaseSulfonylurea ReceptorsTriglyceridesWeight GainConceptsSkeletal muscleInsulin-stimulated glucose transportGene-targeting strategiesGlucose uptake mechanismsInsulin-stimulated glucose uptakeHomozygous null miceRegulatory subunitInsertional mutagenesisWild typeEnhanced glucose useProtection of tissuesDiverse arrayGlucose transportChannel activityUptake mechanismNull miceATP-sensitive potassium channelsPotassium channelsGlucose uptakeMembrane excitabilityFuture therapeutic approachesWild-type littermatesTarget blood glucose levelsInsulin actionPhysiologic function