2007
Mitochondrial dysfunction due to long-chain Acyl-CoA dehydrogenase deficiency causes hepatic steatosis and hepatic insulin resistance
Zhang D, Liu ZX, Choi CS, Tian L, Kibbey R, Dong J, Cline GW, Wood PA, Shulman GI. Mitochondrial dysfunction due to long-chain Acyl-CoA dehydrogenase deficiency causes hepatic steatosis and hepatic insulin resistance. Proceedings Of The National Academy Of Sciences Of The United States Of America 2007, 104: 17075-17080. PMID: 17940018, PMCID: PMC2040460, DOI: 10.1073/pnas.0707060104.Peer-Reviewed Original ResearchMeSH KeywordsAcyl Coenzyme AAcyl-CoA Dehydrogenase, Long-ChainAnimalsCalorimetryCarbon IsotopesDiglyceridesEnergy MetabolismFatty LiverGene Expression RegulationGlucoseHomeostasisInsulinInsulin ResistanceLiverMiceMitochondriaMuscle, SkeletalOxidation-ReductionProtein Kinase C-epsilonSignal TransductionTriglyceridesConceptsLong-chain acyl-CoA dehydrogenaseHepatic insulin resistanceInsulin stimulationMitochondrial functionInsulin resistanceMitochondrial fatty acid oxidation capacityMitochondrial fatty acid oxidationAcyl-CoA dehydrogenaseHepatic steatosisFatty acid oxidation capacityAkt2 activationDe novo synthesisFatty acid oxidationPKCepsilon activationKey enzymeHyperinsulinemic-euglycemic clampLong-chain acyl-CoA dehydrogenase deficiencyType 2 diabetesPrimary defectMitochondrial dysfunctionHepatic glucose productionAcyl-CoA dehydrogenase deficiencyPKCepsilon activityNovo synthesisDiacylglycerol accumulation
2005
Hormone-sensitive lipase knockout mice have increased hepatic insulin sensitivity and are protected from short-term diet-induced insulin resistance in skeletal muscle and heart
Park SY, Kim HJ, Wang S, Higashimori T, Dong J, Kim YJ, Cline G, Li H, Prentki M, Shulman GI, Mitchell GA, Kim JK. Hormone-sensitive lipase knockout mice have increased hepatic insulin sensitivity and are protected from short-term diet-induced insulin resistance in skeletal muscle and heart. AJP Endocrinology And Metabolism 2005, 289: e30-e39. PMID: 15701680, DOI: 10.1152/ajpendo.00251.2004.Peer-Reviewed Original ResearchConceptsHSL-KO miceHormone-sensitive lipaseDiet-induced insulin resistanceHSL-deficient miceHigh-fat feedingInsulin resistanceSkeletal muscleGlucose metabolismInsulin actionTissue-specific insulin actionWhole-body fat massGlucose uptakeDiabetic heart failureDiet-induced obesityNormal chow dietBody fat massGroups of miceHyperinsulinemic-euglycemic clampType 2 diabetesFatty acyl-CoA levelsHepatic insulin actionHepatic insulin sensitivityWild-type miceLiver glucose metabolismCardiac glucose uptake
2004
Inactivation of fatty acid transport protein 1 prevents fat-induced insulin resistance in skeletal muscle
Kim JK, Gimeno RE, Higashimori T, Kim HJ, Choi H, Punreddy S, Mozell RL, Tan G, Stricker-Krongrad A, Hirsch DJ, Fillmore JJ, Liu ZX, Dong J, Cline G, Stahl A, Lodish HF, Shulman GI. Inactivation of fatty acid transport protein 1 prevents fat-induced insulin resistance in skeletal muscle. Journal Of Clinical Investigation 2004, 113: 756-763. PMID: 14991074, PMCID: PMC351314, DOI: 10.1172/jci18917.Peer-Reviewed Original ResearchMeSH KeywordsAdiponectinAdipose TissueAnimalsBlood GlucoseCarrier ProteinsDiabetes Mellitus, Type 2Fatty Acid Transport ProteinsFatty AcidsFemaleGene DeletionGene Expression RegulationGlucoseInsulinInsulin ResistanceIntercellular Signaling Peptides and ProteinsMaleMembrane Transport ProteinsMiceMice, KnockoutModels, GeneticMuscle, SkeletalPatch-Clamp TechniquesPhenotypeProteinsSignal TransductionConceptsFatty acid transport protein 1Fatty acid metabolitesInsulin resistanceType 2 diabetesWhole-body adiposityKO miceAcid metabolitesSkeletal muscleChronic high-fat feedingAcute lipid infusionRegular chow dietHigh-fat feedingNovel therapeutic targetFatty acid uptakeIntramuscular accumulationLipid infusionChow dietInsulin sensitivityGlucose homeostasisTherapeutic targetInsulin actionAcid uptakeProtein 1Tissue expressionMice
2001
Glucose toxicity and the development of diabetes in mice with muscle-specific inactivation of GLUT4
Kim J, Zisman A, Fillmore J, Peroni O, Kotani K, Perret P, Zong H, Dong J, Kahn C, Kahn B, Shulman G. Glucose toxicity and the development of diabetes in mice with muscle-specific inactivation of GLUT4. Journal Of Clinical Investigation 2001, 108: 153-160. PMID: 11435467, PMCID: PMC353719, DOI: 10.1172/jci10294.Peer-Reviewed Original ResearchMeSH KeywordsAdipose TissueAge of OnsetAnimalsDepression, ChemicalDiabetes Mellitus, Type 2Disease Models, AnimalGlucoseGlucose Transporter Type 4HyperglycemiaInsulinInsulin Infusion SystemsInsulin ResistanceKidney TubulesLiverMaleMiceMice, KnockoutMonosaccharide Transport ProteinsMuscle ProteinsMuscle, SkeletalPhlorhizinPrediabetic StateProtein TransportConceptsDevelopment of diabetesMuscle glucose uptakeKO miceHepatic glucose productionInsulin-stimulated glucose uptakeGlucose toxicityMuscle-specific inactivationGlucose uptakeAdipose tissueInsulin-stimulated muscle glucose uptakeGlucose productionWhole-body glucose uptakeSkeletal muscle glucose uptakeAdipose tissue glucose uptakeSuppress hepatic glucose productionTissue glucose uptakeHyperinsulinemic-euglycemic clampMuscle glucose transportInsulin resistanceTransgenic miceDiabetes phenotypeInsulin actionPhloridzin treatmentInsulin's abilityDiabetes