Jonathan Bogan, MD
Professor of Medicine (Endocrinology) and of Cell BiologyCards
About
Research
Overview
Dr. Bogan’s laboratory studies molecular mechanisms controlling GLUT4 glucose transporter targeting in adipose and muscle cells. In cell types, insulin stimulates glucose uptake by translocating GLUT4 from intracellular membranes to the cell surface. Understanding how this occurs has been a longstanding puzzle. Dr. Bogan and his coworkers identified proteins that sequester GLUT4 in nonendosomal, intracellular vesicles in the absence of insulin. Insulin then acts on these proteins to mobilize GLUT4 to the cell surface. This action is coordinated with other insulin signals that act on GTPases to direct vesicle targeting. Current work is directed to understand the biochemical mechanisms involved in this response, including phosphorylation, GTPase signaling, and ubiquitin-like modification pathways.
Much current work in the laboratory focuses on a proteolytic mechanism that regulates glucose uptake in fat and muscle. Previous work identified the TUG protein as a critical regulator of GLUT4 targeting, which limits cell-surface GLUT4 and glucose uptake in cells not stimulated with insulin. TUG traps GLUT4 in non-endosomal vesicles, bound at the Golgi matrix, and insulin triggers site-specific endoproteolytic cleavage of TUG to liberate these vesicles for translocation to the cell surface. GLUT4 and other vesicle cargoes are then maintained at the cell surface by cycling through endosomes, and they bypass a TUG-regulated compartment until insulin signaling is terminated, and the cargoes are re-sequestered. This arrangement obviates the need for ongoing TUG cleavage during sustained insulin exposure. TUG cleavage generates an N-terminal product that functions as a novel ubiquitin-like protein modifier, implicating new enzymatic activities in insulin action. In mice, this proteolytic pathway controls whole-body and muscle-specific glucose uptake, and data show that vesicle cargoes other than GLUT4 contribute to the regulation of vasopressin action and, possibly, lipid metabolism. In addition, the TUG C-terminal product enters the nucleus and regulates gene expression to control fatty acid oxidation, thermogenesis, and overall energy expenditure. Thus, regulated TUG cleavage and vesicle translocation coordinates distinct physiologic outputs, and dysregulation of this pathway may contribute to multiple aspects of the metabolic syndrome and obesity.
The pathway that is utilized by GLUT4 is likely one instance of a general pathway to regulate the cell surface targeting of membrane proteins in response to extracellular stimuli. Work on GLUT4 targeting may thus have far-reaching implications for a wide range of physiology. In addition, this regulated pathway is likely a cell type-specific adaptation of a fundamental trafficking pathway present in most cells. Current work will elucidate this pathway and how it is adapted to control GLUT4, using a combination of biochemical and cell biological approaches, genetically engineered mice, and studies of organism-level metabolism and physiology.
Medical Research Interests
Academic Achievements & Community Involvement
Clinical Care
Overview
Jonathan S. Bogan, MD’s first objective when providing consultations to inpatients with endocrine disease at Yale New Haven Hospital is to let them know they are not alone. He tells them, “My role is to be your partner in helping you manage your medical issues.”
“Our practice in the endocrine division at Yale Medicine has very broad clinical expertise, and we see a wide range of patients,” Dr. Bogan says. “We also have a diversity of research on various clinical and basic projects important for endocrine diseases. The high prevalence of these conditions makes it important to understand them.”
Dr. Bogan is an associate professor of medicine (endocrinology) and of cell biology at Yale School of Medicine. In addition to his clinical practice, he a researcher focused on understanding the development of type 2 diabetes and metabolic syndrome, and how both conditions can be prevented or treated.
Clinical Specialties
News & Links
News
- September 14, 2023
New Professors in the Department of Internal Medicine
- September 20, 2021
Yale Endocrinology & Metabolism Publications
- April 01, 2021
Insulin Stimulates Production of Body Heat, New Study Finds
- March 07, 2021Source: Nature Metabolism
A new mechanism by which insulin regulates the production of body heat