Pietro De Camilli, MD
John Klingenstein Professor of Neuroscience and Professor of Cell BiologyCards
Appointments
Additional Titles
Investigator, Howard Hughes Medical Institute
Director, Program in Cellular Neuroscience, Neurodegeneration and Repair
Contact Info
Appointments
Additional Titles
Investigator, Howard Hughes Medical Institute
Director, Program in Cellular Neuroscience, Neurodegeneration and Repair
Contact Info
Appointments
Additional Titles
Investigator, Howard Hughes Medical Institute
Director, Program in Cellular Neuroscience, Neurodegeneration and Repair
Contact Info
About
Titles
John Klingenstein Professor of Neuroscience and Professor of Cell Biology
Investigator, Howard Hughes Medical Institute; Director, Program in Cellular Neuroscience, Neurodegeneration and Repair
Biography
A native of Italy, De Camilli studied at the Liceo Manzoni in Milan, earned his M.D. degree from the University of Milano in 1972 and obtained a postgraduate degree in medical endocrinology from the University of Pavia in Italy. He was a postdoctoral fellow (1978-79) with Paul Greengard in the Department of Pharmacology at Yale, and subsequently an assistant professor in the Yale Section of Cell Biology. Following a return of a few years to Milan, he moved back to Yale in the late 1980s, where he is now John Klingenstein Professor of Neuroscience. He became an Investigator in the Howard Hughes Medical Institute in 1992. From 1997 to 2000 he served as Chair of the Department of Cell Biology and since 2005 he is Founding Director of the Yale Program in Cellular Neuroscience, Neurodegeneration and Repair (CNNR). He also served as Chair of the Department of Neuroscience from 2015 to 2021, and as Director of the Kavli Institute for Neuroscience from 2015 to 2022.
The De Camilli lab is interested in the cell biology of neuronal synapses. His studies on synaptic vesicle dynamics have contributed to the general fields of exocytosis and endocytosis. His research has provided insight into mechanisms of membrane fission and has revealed ways through which membrane-associated proteins can generate, sense and stabilize lipid bilayer curvature. His discovery and characterization of the role of phosphoinositide metabolism in the control of endocytosis have broad implications in the fields of phospholipid signaling and of membrane traffic. Building on this work, he has recently become interested in the role of membrane contact sites in the control of the homeostasis of bilayer lipids. His studies of synapses have also contributed to the elucidation of pathogenetic mechanisms of human diseases, with recent emphasis on Parkinson's disease.
Appointments
Cell Biology
ProfessorFully JointNeuroscience
ProfessorFully Joint
Other Departments & Organizations
- Alzheimer's Disease Research Center (ADRC)
- Cell Biology
- De Camilli Lab
- Developmental Cell Biology and Genetics
- Diabetes Research Center
- Fellowship Training
- Interdepartmental Neuroscience Program
- Kavli Institute for Neuroscience
- Membrane Traffic
- Molecular Cell Biology, Genetics and Development
- Neuroscience
- Neuroscience Track
- NIDA Neuroproteomics Center
- Program in Cellular Neuroscience, Neurodegeneration and Repair
- Wu Tsai Institute
- Yale Combined Program in the Biological and Biomedical Sciences (BBS)
- Yale Ventures
Education & Training
- MD
- University of Milan (1972)
Research
Overview
Medical Research Interests
ORCID
0000-0001-9045-0723- View Lab Website
De Camilli Lab
Research at a Glance
Yale Co-Authors
Publications Timeline
Research Interests
Shawn Ferguson, PhD
Yumei Wu, PhD
Berrak Ugur, PhD
Hanieh Falahati, PhD
Hongying Shen, PhD
David McCormick, PhD
Endocytosis
Cell Membrane
Synapses
Parkinson Disease
Lipid Metabolism
Alzheimer Disease
Publications
2024
Ectopic reconstitution of a spine-apparatus-like structure provides insight into mechanisms underlying its formation
Falahati H, Wu Y, Fang M, De Camilli P. Ectopic reconstitution of a spine-apparatus-like structure provides insight into mechanisms underlying its formation. Current Biology 2024 PMID: 39626668, DOI: 10.1016/j.cub.2024.11.010.Peer-Reviewed Original ResearchAltmetricConceptsEndoplasmic reticulumSpine apparatusActin bundlesEndomembrane networkER sheetsConserved regionProtein synaptopodinCisternal organelleNon-neuronal cellsER cisternsOrganellesSynaptopodinProteinNeuronal dendritesNeuronal spinesAxon initial segmentFindings shed lightBiogenesisActinProtein matrixNarrow lumenReticulumMammalsInitial segmentMechanismVPS13B is localized at the interface between Golgi cisternae and is a functional partner of FAM177A1
Ugur B, Schueder F, Shin J, Hanna M, Wu Y, Leonzino M, Su M, McAdow A, Wilson C, Postlethwait J, Solnica-Krezel L, Bewersdorf J, De Camilli P. VPS13B is localized at the interface between Golgi cisternae and is a functional partner of FAM177A1. Journal Of Cell Biology 2024, 223: e202311189. PMID: 39331042, PMCID: PMC11451052, DOI: 10.1083/jcb.202311189.Peer-Reviewed Original ResearchMeSH Keywords and ConceptsConceptsLipid transportGolgi complex proteinGolgi subcompartmentsGolgi membranesGolgi cisternaeProtein familyFunctional partnersGolgi complexKO cellsComplex proteinsFAM177A1GolgiVPS13BAdjacent membranesMutationsProteinCohen syndromeLipidOrthologsInteractorsBrefeldinMembraneOrganellesSubcompartmentsDevelopmental disordersPhosphoglycerate kinase is a central leverage point in Parkinson’s disease–driven neuronal metabolic deficits
Kokotos A, Antoniazzi A, Unda S, Ko M, Park D, Eliezer D, Kaplitt M, De Camilli P, Ryan T. Phosphoglycerate kinase is a central leverage point in Parkinson’s disease–driven neuronal metabolic deficits. Science Advances 2024, 10: eadn6016. PMID: 39167658, PMCID: PMC11338267, DOI: 10.1126/sciadv.adn6016.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsPhosphoglycerate kinase 1Metabolic deficitsExpressions of Phosphoglycerate Kinase 1Dopamine axonsParkinson's diseasePD-associated pathologyViral expressionLoss of functionNeuronal glycolysisSusceptibility lociIn vivoFamilial Parkinson's diseasePD therapeuticsMetabolic lesionsProduction kineticsKinase 1Mitochondrial integrityPhosphoglycerate kinaseBioenergetic deficitsSynaptic dysfunctionGenetic originDeficitsPARK7/DJ-1PhosphoglycerateA complex of the lipid transport ER proteins TMEM24 and C2CD2 with band 4.1 at cell–cell contacts
Johnson B, Iuliano M, Lam T, Biederer T, De Camilli P. A complex of the lipid transport ER proteins TMEM24 and C2CD2 with band 4.1 at cell–cell contacts. Journal Of Cell Biology 2024, 223: e202311137. PMID: 39158698, PMCID: PMC11334333, DOI: 10.1083/jcb.202311137.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsPlasma membraneNon-vesicular lipid transferSites of cell contactC-terminus motifsCell contact-dependent signalsContact-dependent signalingCell-cell contactER/PM junctionsTMEM24ER proteinsPM proteinsSynCAM 1Cell adhesion moleculesCellular functionsLipid transferC2CD2Phospholipid transportLipid transportCell contactProteinAdhesion moleculesCalcium homeostasisCellsFamily membersParalogsOverlapping role of synaptophysin and synaptogyrin family proteins in determining the small size of synaptic vesicles
Park D, Fujise K, Wu Y, Luján R, Del Olmo-Cabrera S, Wesseling J, De Camilli P. Overlapping role of synaptophysin and synaptogyrin family proteins in determining the small size of synaptic vesicles. Proceedings Of The National Academy Of Sciences Of The United States Of America 2024, 121: e2409605121. PMID: 38985768, PMCID: PMC11260120, DOI: 10.1073/pnas.2409605121.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsSynaptic vesiclesFamily proteinsBiogenesis of synaptic vesiclesClusters of small vesiclesSize of synaptic vesiclesSynaptogyrin familySynaptogyrin-1Vesicle proteinsSynaptogyrinTransmembrane domainOrganismal levelSmall vesiclesProteinMild defectsVesiclesFamily membersBiogenesisSmall sizeFamilyMiceSynapsinCoexpressionAbundanceSynaptoporinMembersLoss of function of FAM177A1, a Golgi complex localized protein, causes a novel neurodevelopmental disorder
Kohler J, Legro N, Baldridge D, Shin J, Bowman A, Ugur B, Jackstadt M, Shriver L, Patti G, Zhang B, Feng W, McAdow A, Goddard P, Ungar R, Jensen T, Smith K, Fresard L, Alvarez R, Bonner D, Reuter C, McCormack C, Kravets E, Marwaha S, Holt J, Network U, Acosta M, Adam M, Adams D, Alvarez R, Alvey J, Amendola L, Andrews A, Ashley E, Bacino C, Bademci G, Balasubramanyam A, Baldridge D, Bale J, Bamshad M, Barbouth D, Bayrak-Toydemir P, Beck A, Beggs A, Behrens E, Bejerano G, Bellen H, Bennett J, Berg-Rood B, Bernstein J, Berry G, Bican A, Bivona S, Blue E, Bohnsack J, Bonner D, Botto L, Boyd B, Briere L, Burke E, Burrage L, Butte M, Byers P, Byrd W, Carey J, Carrasquillo O, Cassini T, Chang T, Chanprasert S, Chao H, Chinn I, Clark G, Coakley T, Cobban L, Cogan J, Coggins M, Cole F, Colley H, Cope H, Corner B, Corona R, Craigen W, Crouse A, Cunningham M, D’Souza P, Dai H, Dasari S, Davis J, Dayal J, Dell’Angelica E, Dickson P, Dipple K, Doherty D, Dorrani N, Doss A, Douine E, Earl D, Eckstein D, Emrick L, Eng C, Ezell K, Falk M, Fieg E, Fisher P, Fogel B, Forghani I, Gahl W, Glass I, Gochuico B, Goddard P, Godfrey R, Golden-Grant K, Grajewski A, Hadley D, Hahn S, Halley M, Hamid R, Hassey K, Hayes N, High F, Hing A, Hisama F, Holm I, Hom J, Horike-Pyne M, Huang A, Hutchison S, Introne W, Isasi R, Izumi K, Jamal F, Jarvik G, Jarvik J, Jayadev S, Jean-Marie O, Jobanputra V, Karaviti L, Ketkar S, Kiley D, Kilich G, Kobren S, Kohane I, Kohler J, Korrick S, Kozuira M, Krakow D, Krasnewich D, Kravets E, Lalani S, Lam B, Lam C, Lanpher B, Lanza I, LeBlanc K, Lee B, Levitt R, Lewis R, Liu P, Liu X, Longo N, Loo S, Loscalzo J, Maas R, Macnamara E, MacRae C, Maduro V, Maghiro A, Mahoney R, Malicdan M, Mamounas L, Manolio T, Mao R, Maravilla K, Marom R, Marth G, Martin B, Martin M, Martínez-Agosto J, Marwaha S, McCauley J, McConkie-Rosell A, McCray A, McGee E, Mefford H, Merritt J, Might M, Mirzaa G, Morava E, Moretti P, Mulvihill J, Nakano-Okuno M, Nelson S, Neumann S, Newman J, Nicholas S, Nickerson D, Nieves-Rodriguez S, Novacic D, Oglesbee D, Orengo J, Pace L, Pak S, Pallais J, Palmer C, Papp J, Parker N, Phillips J, Posey J, Potocki L, Swerdzewski B, Quinlan A, Rao D, Raper A, Raskind W, Renteria G, Reuter C, Rives L, Robertson A, Rodan L, Rosenfeld J, Rosenwasser N, Rossignol F, Ruzhnikov M, Sacco R, Sampson J, Saporta M, Schaechter J, Schedl T, Schoch K, Scott D, Scott C, Seto E, Shashi V, Shin J, Silverman E, Sinsheimer J, Sisco K, Smith E, Smith K, Solnica-Krezel L, Solomon B, Spillmann R, Stoler J, Sullivan K, Sullivan J, Sun A, Sutton S, Sweetser D, Sybert V, Tabor H, Tan Q, Tan A, Tarakad A, Tekin M, Telischi F, Thorson W, Tifft C, Toro C, Tran A, Ungar R, Urv T, Vanderver A, Velinder M, Viskochil D, Vogel T, Wahl C, Walker M, Wallace S, Walley N, Wambach J, Wan J, Wangler M, Ward P, Wegner D, Hubshman M, Wener M, Wenger T, Westerfield M, Wheeler M, Whitlock J, Wolfe L, Worley K, Xiao C, Yamamoto S, Yang J, Zhang Z, Zuchner S, Worthey E, Ashley E, Montgomery S, Fisher P, Postlethwait J, De Camilli P, Solnica-Krezel L, Bernstein J, Wheeler M. Loss of function of FAM177A1, a Golgi complex localized protein, causes a novel neurodevelopmental disorder. Genetics In Medicine 2024, 26: 101166. PMID: 38767059, PMCID: PMC11451386, DOI: 10.1016/j.gim.2024.101166.Peer-Reviewed Original ResearchCitationsAltmetricConceptsNegative regulation of cell proliferationLoss-of-function variantsPathways associated with apoptosisRegulation of cell proliferationRelationship to human diseaseHuman cell linesNeurodevelopmental disordersRNA-seqLocalized proteinsImmune-associated genesZebrafish cellsGolgi complexModel organismsGlobal developmental delayBiallelic variantsFAM177A1Negative regulatorHuman diseasesZebrafish model organismPhysiological functionsCell linesGolgiHuman fibroblastsZebrafishCell proliferationParkinsonism Sac domain mutation in Synaptojanin-1 affects ciliary properties in iPSC-derived dopaminergic neurons
Rafiq N, Fujise K, Rosenfeld M, Xu P, De Camilli P. Parkinsonism Sac domain mutation in Synaptojanin-1 affects ciliary properties in iPSC-derived dopaminergic neurons. Proceedings Of The National Academy Of Sciences Of The United States Of America 2024, 121: e2318943121. PMID: 38635628, PMCID: PMC11047088, DOI: 10.1073/pnas.2318943121.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsSynaptojanin 1Endocytic factorsDA neuronsCilia-mediated signalingNerve terminalsIPSC-derived dopaminergic neuronsUbiquitin chainsUbiquitinated proteinsCiliary baseCilia lengthNeurological defectsDopaminergic neuronsProtein dynamicsDomain mutationsAssembly stateIsogenic controlsNeuronsAbnormal accumulationMutationsMiceFocal concentrationParkinsonPI(4UbiquitinEndocytosisA serendipitous discovery of a family of membrane remodelling proteins
De Camilli P. A serendipitous discovery of a family of membrane remodelling proteins. Nature Cell Biology 2024, 26: 173-173. PMID: 38307996, DOI: 10.1038/s41556-023-01307-5.Peer-Reviewed Original ResearchAltmetric
2023
Membrane remodeling properties of the Parkinson’s disease protein LRRK2
Wang X, Espadas J, Wu Y, Cai S, Ge J, Shao L, Roux A, De Camilli P. Membrane remodeling properties of the Parkinson’s disease protein LRRK2. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2309698120. PMID: 37844218, PMCID: PMC10614619, DOI: 10.1073/pnas.2309698120.Peer-Reviewed Original ResearchCitationsAltmetricEnd-binding protein 1 promotes specific motor-cargo association in the cell body prior to axonal delivery of dense core vesicles
Park J, Xie Y, Miller K, De Camilli P, Yogev S. End-binding protein 1 promotes specific motor-cargo association in the cell body prior to axonal delivery of dense core vesicles. Current Biology 2023, 33: 3851-3864.e7. PMID: 37586371, PMCID: PMC10529979, DOI: 10.1016/j.cub.2023.07.052.Peer-Reviewed Original ResearchMeSH Keywords and ConceptsConceptsKIF1A/UNCTrans-GolgiDense-core vesiclesEnd-binding protein 1Microtubule growthEnd-binding protein EB1Calponin homology domainMicrotubule-associated proteinsDCV biogenesisCore vesiclesSorting machineryHomology domainAxonal deliveryProtein EB1DCV cargosEndogenous cargoUnrelated proteinsUnexpected roleFunction experimentsGolgiEarly stepsProtein 1UNCNeuronal functionProtein
Academic Achievements & Community Involvement
activity Yale Program for Cellular Neuroscience, Neurodegeneration and Repair (CNNR)
Professional OrganizationsDirectorDetails2005 - Presenthonor van Deenen Medal
International AwardInstitute of Biomembranes at Utrecht UniversityDetails04/26/2023Netherlandsactivity Kavli Institute for Neuroscience
Professional OrganizationsDirectorDetailsDirector08/31/2015 - 02/28/2022honor E.B.Wilson Medal
International AwardAmerican Society for Cell BiologyDetails09/12/2021United Statesactivity Yale University School of Medicine
Professional OrganizationsChairDetailsChair of the Department of Neuroscience09/10/2015 - 09/09/2021
News & Links
Media
- FIB-SEM generated 3D reconstruction of subcellular organelles present in dendritic spines of cortical neurons. (from Wu et al. PNAS 2016, PMID:28559323)
- EM tomographic reconstruction: plasma membrane (green lines) and clathrin coated endocytic intermediates in an axon terminal from a neuron that lacks both dynamin 1 and dynamin 3 (dynamin 1 and 3 double KO mouse).
News
- December 17, 2024
Kavli Institute at Yale: 20 Years of Innovation
- November 21, 2024
Three Yale School of Medicine-led Teams Awarded $18 Million to Advance Parkinson’s Disease Research
- October 14, 2024
Precision Medicine for Parkinson’s: New Yale Center for Advanced Research
- August 30, 2024
Kavli Institute for Neuroscience Celebrates 20 Years with Symposium on Sept. 20
Get In Touch
Contacts
Administrative Support
Events
Everyone Volker Haucke, PhD