2024
Intravenous Infusion of Autologous Mesenchymal Stem Cells Expanded in Auto Serum for Chronic Spinal Cord Injury Patients: A Case Series
Hirota R, Sasaki M, Iyama S, Kurihara K, Fukushi R, Obara H, Oshigiri T, Morita T, Nakazaki M, Namioka T, Namioka A, Onodera R, Kataoka-Sasaki Y, Oka S, Takemura M, Ukai R, Yokoyama T, Sasaki Y, Yamashita T, Kobayashi M, Okuma Y, Kondo R, Aichi R, Ohmatsu S, Kawashima N, Ito Y, Kobune M, Takada K, Ishiai S, Ogata T, Teramoto A, Yamashita T, Kocsis J, Honmou O. Intravenous Infusion of Autologous Mesenchymal Stem Cells Expanded in Auto Serum for Chronic Spinal Cord Injury Patients: A Case Series. Journal Of Clinical Medicine 2024, 13: 6072. PMID: 39458022, PMCID: PMC11509003, DOI: 10.3390/jcm13206072.Peer-Reviewed Original ResearchAmerican Spinal Injury Association Impairment ScaleSevere spinal cord injuryMesenchymal stem cell infusionAutologous mesenchymal stem cellsIntravenous infusionCase seriesMesenchymal stem cellsQuality of lifeAuto-serumSpinal cord injuryFunctional improvementChronic spinal cord injury patientsIntravenous infusion of mesenchymal stem cellsInfusion of mesenchymal stem cellsStem cellsCord injurySpinal Cord Independence Measure IIIAmerican Spinal Injury Association Impairment Scale grades CSpinal cord injury patientsChronic SCI patientsClassification of Spinal Cord InjuryNeurological Classification of Spinal Cord InjurySignificant functional improvementAssociation Impairment ScaleInternational Standards for Neurological Classification of Spinal Cord Injury
2023
Repeated intravenous infusion of mesenchymal stem cells enhances recovery of motor function in a rat model with chronic spinal cord injury
Kurihara K, Sasaki M, Nagahama H, Obara H, Fukushi R, Hirota R, Yoshimoto M, Teramoto A, Kocsis J, Yamashita T, Honmou O. Repeated intravenous infusion of mesenchymal stem cells enhances recovery of motor function in a rat model with chronic spinal cord injury. Brain Research 2023, 1817: 148484. PMID: 37442249, DOI: 10.1016/j.brainres.2023.148484.Peer-Reviewed Original ResearchConceptsSpinal cord injuryInfusion of MSCsChronic spinal cord injuryMesenchymal stem cellsAxonal sproutingCord injuryHD-MSCsIntravenous infusionMotor functionVehicle groupWeek 6Single high-dose infusionInjection of MSCsChronic SCI ratsSingle MSC injectionGreater functional recoveryRat SCI modelSingle intravenous infusionHigh-dose infusionLimited treatment optionsGreater functional improvementSingle high doseHigh disease burdenVivo diffusion tensor imagingEx vivo diffusion tensor imagingHuman mesenchymal stem‐derived extracellular vesicles improve body growth and motor function following severe spinal cord injury in rat
Nakazaki M, Lankford K, Yamamoto H, Mae Y, Kocsis J. Human mesenchymal stem‐derived extracellular vesicles improve body growth and motor function following severe spinal cord injury in rat. Clinical And Translational Medicine 2023, 13: e1284. PMID: 37323108, PMCID: PMC10272923, DOI: 10.1002/ctm2.1284.Peer-Reviewed Original ResearchConceptsSpinal cord injurySevere spinal cord injuryFunctional motor recoveryYoung adult ratsMotor recoveryMesenchymal stem/stromal cellsSmall extracellular vesiclesMSC-sEVsCord injuryM2 macrophagesMotor functionAdult ratsBody growthPro-inflammatory cytokine tumor necrosisAdult spinal cord injuryDay 7 post-SCISystemic pro-inflammatory cytokinesIGF-1 levelsPro-inflammatory cytokinesCytokine tumor necrosisSystemic serum levelsBroad therapeutic benefitsNormal body growthExtracellular vesiclesDifferent treatment groups
2022
Enhanced Network in Corticospinal Tracts after Infused Mesenchymal Stem Cells in Spinal Cord Injury
Hirota R, Sasaki M, Kataoka-Sasaki Y, Oshigiri T, Kurihara K, Fukushi R, Oka S, Ukai R, Yoshimoto M, Kocsis JD, Yamashita T, Honmou O. Enhanced Network in Corticospinal Tracts after Infused Mesenchymal Stem Cells in Spinal Cord Injury. Journal Of Neurotrauma 2022, 39: 1665-1677. PMID: 35611987, PMCID: PMC9734021, DOI: 10.1089/neu.2022.0106.Peer-Reviewed Original ResearchConceptsSpinal cord injuryCorticospinal tractMesenchymal stem cellsCord injurySpinal cordSpontaneous recoveryInfused mesenchymal stem cellsLimited spontaneous recoveryDorsal corticospinal tractLateral corticospinal tractStem cellsCST pathwayCST projectionsSCI inductionMSC infusionAxonal sproutingFunctional recoveryLateral funiculusIntravenous infusionAxonal tracerLesion coreMotor pathwaysFunctional improvementCircuit reorganizationMajor projectionsIntravenous Infusion of Autoserum-Expanded Autologous Mesenchymal Stem Cells in Patients With Chronic Brain Injury: Protocol for a Phase 2 Trial
Oka S, Yamaki T, Sasaki M, Ukai R, Takemura M, Yokoyama T, Kataoka-Sasaki Y, Onodera R, Ito YM, Kobayashi S, Kocsis JD, Iwadate Y, Honmou O. Intravenous Infusion of Autoserum-Expanded Autologous Mesenchymal Stem Cells in Patients With Chronic Brain Injury: Protocol for a Phase 2 Trial. JMIR Research Protocols 2022, 11: e37898. PMID: 35793128, PMCID: PMC9301565, DOI: 10.2196/37898.Peer-Reviewed Original ResearchChronic brain injuryAutologous mesenchymal stem cellsSpinal cord injuryINTERNATIONAL REGISTERED REPORT IDENTIFIERBrain injuryIntravenous infusionRankin Scale gradesCord injuryMesenchymal stem cellsClinical trialsScale gradeTherapeutic efficacyJapan Medical Association CenterSapporo Medical University HospitalInvestigator-initiated clinical trialsModified Rankin Scale gradesOpen-label trialPhase 2 studyPhase 2 trialMedical University HospitalCause of disabilityMotor vehicle accidentsPotential therapeutic efficacyProportion of casesStem cells
2014
Transplantation of Schwann cells and olfactory ensheathing cells as a therapeutic strategy in spinal cord injury
Kocsis J, Bunge M. Transplantation of Schwann cells and olfactory ensheathing cells as a therapeutic strategy in spinal cord injury. 2014, 496-513. DOI: 10.1017/cbo9780511995583.036.Peer-Reviewed Original ResearchNervous systemNeural repairNormal central nervous systemSpinal cord damageSpinal cord injuryRecovery of functionCentral nervous systemNeuron replacementCerebral palsyCord damageCord injuryAxonal regenerationNeuronal deathSchwann cellsTherapeutic strategiesAxon regenerationNeurological rehabilitationBrain disordersCell therapyRehabilitation professionalsInjuryRepairRehabilitationBasic scienceStem cell biology
2007
Demyelinating diseases and potential repair strategies
Radtke C, Spies M, Sasaki M, Vogt PM, Kocsis JD. Demyelinating diseases and potential repair strategies. International Journal Of Developmental Neuroscience 2007, 25: 149-153. PMID: 17408905, PMCID: PMC2692731, DOI: 10.1016/j.ijdevneu.2007.02.002.Peer-Reviewed Original ResearchConceptsMultiple sclerosisInjury modelSpinal cord injuryCell-based strategiesAxon lossNerve compressionNeuroprotective potentialCord injuryFunctional outcomeClinical studiesMS lesionsTherapeutic goalsVulnerable axonsCellular transplantationNeurological disordersDemyelinationRemyelinationNeuroprotectionPotential repair strategiesCell typesSclerosisTransplantationInjuryLesionsAxons
2005
Intravenous infusion of immortalized human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat
Honma T, Honmou O, Iihoshi S, Harada K, Houkin K, Hamada H, Kocsis J. Intravenous infusion of immortalized human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Experimental Neurology 2005, 199: 56-66. PMID: 15967439, PMCID: PMC2605388, DOI: 10.1016/j.expneurol.2005.05.004.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, CDBehavior, AnimalBrain IschemiaCell CountCells, CulturedDisease Models, AnimalExercise TestGreen Fluorescent ProteinsHumansImmunohistochemistryInfusions, IntravenousMagnetic Resonance ImagingMagnetic Resonance SpectroscopyMaleMaze LearningMesenchymal Stem Cell TransplantationMesenchymal Stem CellsPhosphopyruvate HydrataseRatsRats, Sprague-DawleyTime FactorsConceptsMiddle cerebral artery occlusionIntravenous infusionFunctional outcomeLesion sizeTransient middle cerebral artery occlusionMesenchymal stem cellsCerebral artery occlusionCerebral infarction volumeCerebral ischemia modelSpinal cord injurySubsequent histological examinationPotential therapeutic benefitRats 12 hMorris water mazeBone marrow cellsHuman mesenchymal stem cellsStem cellsHTERT-MSCsArtery occlusionInfarction volumeCerebral ischemiaCord injuryFunctional improvementLesion volumeIschemia model28 Transplantation of Peripheral-Myelin-Forming Cells to Repair Demyelinated Axons
Kocsis J, Sasaki M. 28 Transplantation of Peripheral-Myelin-Forming Cells to Repair Demyelinated Axons. 2005, 421-433. DOI: 10.1016/b978-012738761-1/50029-8.Peer-Reviewed Original ResearchTransplantation of SCsTransplantation of OECsSpinal cord injuryCentral nervous systemSchwann cellsAxonal regenerationBone marrow cellsFunctional recoveryMultiple sclerosisCell transplantationCord injurySpinal cordHind limb locomotor functionContusive spinal cord injuryBone marrow cell transplantationMarrow cellsSpinal cord injury modelMarrow cell transplantationCerebral ischemia modelSpinal cord resultsGlobal neuroprotectionDemyelination modelCord resultsFunctional outcomeDemyelinated axons
1997
Spinal Cord Repair: Progress Towards a Daunting Goal
Waxman S, Kocsis J. Spinal Cord Repair: Progress Towards a Daunting Goal. The Neuroscientist 1997, 3: 263-269. DOI: 10.1177/107385849700300414.Peer-Reviewed Original ResearchSpinal cord repairSpinal cordHuman spinal cord injuryUse of neurotrophinsSpinal cord injuryMyelin-forming glial cellsSpinal cord tractsFunctional recoveryNerve graftsAnatomical repairCord injuryGlial cellsAnimal modelsWhite matterGray matterClinical goalsCordInjuryPartial restorationRepairDaunting goalTransplantationNeurotrophinsGraftCNS