Featured Publications
Cardiac dopamine D1 receptor triggers ventricular arrhythmia in chronic heart failure
Yamaguchi T, Sumida TS, Nomura S, Satoh M, Higo T, Ito M, Ko T, Fujita K, Sweet ME, Sanbe A, Yoshimi K, Manabe I, Sasaoka T, Taylor MRG, Toko H, Takimoto E, Naito AT, Komuro I. Cardiac dopamine D1 receptor triggers ventricular arrhythmia in chronic heart failure. Nature Communications 2020, 11: 4364. PMID: 32868781, PMCID: PMC7459304, DOI: 10.1038/s41467-020-18128-x.Peer-Reviewed Original ResearchConceptsVentricular arrhythmiasDopamine D1 receptorsD1 receptorsChronic heart failureHeart failure patientsSustained ventricular tachycardiaNormal calcium handlingFailure patientsHeart failureModel miceVentricular tachycardiaPathophysiological roleCalcium handlingTherapeutic targetDopamine systemSingle-cell resolution analysisArrhythmiasD1RCardiomyocytesReceptorsTachycardiaPatientsMice
2019
Activation of DNA Damage Response and Cellular Senescence in Cardiac Fibroblasts Limit Cardiac Fibrosis After Myocardial Infarction
Shibamoto M, Higo T, Naito AT, Nakagawa A, Sumida T, Okada K, Sakai T, Kuramoto Y, Yamaguchi T, Ito M, Masumura Y, Higo S, Lee JK, Hikoso S, Komuro I, Sakata Y. Activation of DNA Damage Response and Cellular Senescence in Cardiac Fibroblasts Limit Cardiac Fibrosis After Myocardial Infarction. International Heart Journal 2019, 60: 944-957. PMID: 31257341, DOI: 10.1536/ihj.18-701.Peer-Reviewed Original ResearchConceptsCellular senescenceDNA damage response systemDNA damage responseCardiac fibroblastsDDR activationDamage responseMolecular mechanismsSenescenceGene deletionJuxtacrine mannerProliferation of CFsCardiac fibrosisCF proliferationProliferationCardiac remodelingActivationTissue fibrosisRemodelingImportant roleTherapeutic strategiesRoleRecent reportsDeletionRegulationATM gene deletionHigh-throughput single-molecule RNA imaging analysis reveals heterogeneous responses of cardiomyocytes to hemodynamic overload
Satoh M, Nomura S, Harada M, Yamaguchi T, Ko T, Sumida T, Toko H, Naito AT, Takeda N, Tobita T, Fujita T, Ito M, Fujita K, Ishizuka M, Kariya T, Akazawa H, Kobayashi Y, Morita H, Takimoto E, Aburatani H, Komuro I. High-throughput single-molecule RNA imaging analysis reveals heterogeneous responses of cardiomyocytes to hemodynamic overload. Journal Of Molecular And Cellular Cardiology 2019, 128: 77-89. PMID: 30611794, DOI: 10.1016/j.yjmcc.2018.12.018.Peer-Reviewed Original ResearchConceptsTransverse aortic constrictionHemodynamic overloadCardiomyocyte sizeExpression levelsGene expressionHeart failure stageSingle-cell RNA sequencingSingle-molecule RNAMyosin heavy chain βSingle-cell quantitative PCRFetal gene expressionFetal gene programSingle-cell analysis methodsSingle-molecule fluorescenceHeart failureSingle-cell levelPressure overloadAortic constrictionHypertrophy stageCardiac hypertrophyIsolated cardiomyocytesMyh7 expressionTemporal regulationRNA sequencingFetal genes
2018
Cardiomyocyte gene programs encoding morphological and functional signatures in cardiac hypertrophy and failure
Nomura S, Satoh M, Fujita T, Higo T, Sumida T, Ko T, Yamaguchi T, Tobita T, Naito AT, Ito M, Fujita K, Harada M, Toko H, Kobayashi Y, Ito K, Takimoto E, Akazawa H, Morita H, Aburatani H, Komuro I. Cardiomyocyte gene programs encoding morphological and functional signatures in cardiac hypertrophy and failure. Nature Communications 2018, 9: 4435. PMID: 30375404, PMCID: PMC6207673, DOI: 10.1038/s41467-018-06639-7.Peer-Reviewed Original ResearchConceptsCardiac hypertrophyCardiomyocyte remodelingGene programHeart failurePressure overloadMorphological hypertrophyHeart functionHypertrophyP53 deletionEarly hypertrophyFunctional signaturesFunctional phenotypeLate hypertrophyP53 signalingTranscriptional signatureProgram activationMitochondrial inhibitionUnderlying mechanismCardiomyocyte identityCardiomyocytesMitochondrial activationRemodelingFailureTranscriptional programsActivationPhenotypic Screening Using Patient-Derived Induced Pluripotent Stem Cells Identified Pyr3 as a Candidate Compound for the Treatment of Infantile Hypertrophic Cardiomyopathy
Sakai T, Naito AT, Kuramoto Y, Ito M, Okada K, Higo T, Nakagawa A, Shibamoto M, Yamaguchi T, Sumida T, Nomura S, Umezawa A, Miyagawa S, Sawa Y, Morita H, Lee JK, Shiojima I, Sakata Y, Komuro I. Phenotypic Screening Using Patient-Derived Induced Pluripotent Stem Cells Identified Pyr3 as a Candidate Compound for the Treatment of Infantile Hypertrophic Cardiomyopathy. International Heart Journal 2018, 59: 17-730. PMID: 30101858, DOI: 10.1536/ihj.17-730.Peer-Reviewed Original ResearchConceptsDiastolic intracellular calcium concentrationInfantile hypertrophic cardiomyopathyHypertrophic cardiomyopathyIntracellular calcium concentrationHCM patientsIPSC-CMsInduced pluripotent stem cellsNoonan syndromeCalcium concentrationIdiopathic hypertrophic cardiomyopathyPatient-derived induced pluripotent stem cellsStem cellsPluripotent stem cellsHealthy subjectsPatientsChannel inhibitorsPhenotypic screeningPyr3Genetic disordersDisease-related phenotypesCardiomyopathySyndromeCandidate compoundsPresent studyTreatment
2017
DNA single-strand break-induced DNA damage response causes heart failure
Higo T, Naito AT, Sumida T, Shibamoto M, Okada K, Nomura S, Nakagawa A, Yamaguchi T, Sakai T, Hashimoto A, Kuramoto Y, Ito M, Hikoso S, Akazawa H, Lee JK, Shiojima I, McKinnon PJ, Sakata Y, Komuro I. DNA single-strand break-induced DNA damage response causes heart failure. Nature Communications 2017, 8: 15104. PMID: 28436431, PMCID: PMC5413978, DOI: 10.1038/ncomms15104.Peer-Reviewed Original ResearchConceptsPressure overload-induced heart failureOverload-induced heart failureHeart failureSingle-strand breaksNF-κB signalingNew therapeutic strategiesSSB accumulationDDR activationInflammatory cytokinesTherapeutic strategiesUnrepaired single-strand breaksDNA damageDNA single-strand breaksCausative roleDNA damage responseGenetic deletionPathogenesisActivationPivotal roleFailureDamage responseHeartCritical roleCytokinesMice
2015
Generation of Induced Pluripotent Stem Cells From Patients With Duchenne Muscular Dystrophy and Their Induction to Cardiomyocytes
Hashimoto A, Naito AT, Lee JK, Kitazume-Taneike R, Ito M, Yamaguchi T, Nakata R, Sumida T, Okada K, Nakagawa A, Higo T, Kuramoto Y, Sakai T, Tominaga K, Okinaga T, Kogaki S, Ozono K, Miyagawa S, Sawa Y, Sakata Y, Morita H, Umezawa A, Komuro I. Generation of Induced Pluripotent Stem Cells From Patients With Duchenne Muscular Dystrophy and Their Induction to Cardiomyocytes. International Heart Journal 2015, 57: 112-117. PMID: 26673445, DOI: 10.1536/ihj.15-376.Peer-Reviewed Original ResearchConceptsDuchenne muscular dystrophyDMD patientsMuscular dystrophyYears of ageIPS cell-derived cardiomyocytesPatient-specific iPS cellsDMD cardiomyopathyCardiac dysfunctionCurative treatmentCell-derived cardiomyocytesT lymphocytesPatientsCardiac phenotypeSendai virus vectorCardiac muscleSkeletal muscleDystrophin defectsInduced pluripotent stem cellsCardiomyocytesCell linesStem cellsDystrophin proteinDystrophyPluripotent stem cellsMuscle
2010
Promotion of CHIP-Mediated p53 Degradation Protects the Heart From Ischemic Injury
Naito AT, Okada S, Minamino T, Iwanaga K, Liu ML, Sumida T, Nomura S, Sahara N, Mizoroki T, Takashima A, Akazawa H, Nagai T, Shiojima I, Komuro I. Promotion of CHIP-Mediated p53 Degradation Protects the Heart From Ischemic Injury. Circulation Research 2010, 106: 1692-1702. PMID: 20413784, DOI: 10.1161/circresaha.109.214346.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornApoptosisBase SequenceBenzoquinonesCell HypoxiaChlorocebus aethiopsCOS CellsDisease Models, AnimalGenetic TherapyHSP90 Heat-Shock ProteinsHumansHypoxia-Inducible Factor 1, alpha SubunitLactams, MacrocyclicMaleMiceMice, Inbred C57BLMice, KnockoutMolecular Sequence DataMutationMyocardial InfarctionMyocytes, CardiacPromoter Regions, GeneticProteasome Endopeptidase ComplexProtein Processing, Post-TranslationalRatsRats, WistarRNA InterferenceTranscriptional ActivationTumor Suppressor Protein p53UbiquitinationUbiquitin-Protein LigasesVentricular RemodelingConceptsMyocardial infarctionP53 accumulationCardiomyocyte apoptosisCoronary heart diseaseNumber of patientsNovel therapeutic strategiesP53 degradationApoptosis of cardiomyocytesHeat shock proteinsHeart failureIschemic injuryCardioprotective effectsVentricular remodelingCHIP overexpressionHeart diseaseInfarctionTherapeutic strategiesProteasomal degradationMyocardial apoptosisAmount of p53Molecular mechanismsShock proteinsP53 antagonistP53 accumulatesProtein levels