2019
West Nile Virus Mosquito Vectors in North America
Rochlin I, Faraji A, Healy K, Andreadis T. West Nile Virus Mosquito Vectors in North America. Journal Of Medical Entomology 2019, 56: 1475-1490. PMID: 31549725, DOI: 10.1093/jme/tjz146.Peer-Reviewed Original ResearchSeasonal temperatures and hydrological conditions improve the prediction of West Nile virus infection rates in Culex mosquitoes and human case counts in New York and Connecticut
Keyel A, Timm O, Backenson P, Prussing C, Quinones S, McDonough K, Vuille M, Conn J, Armstrong P, Andreadis T, Kramer L. Seasonal temperatures and hydrological conditions improve the prediction of West Nile virus infection rates in Culex mosquitoes and human case counts in New York and Connecticut. PLOS ONE 2019, 14: e0217854. PMID: 31158250, PMCID: PMC6546252, DOI: 10.1371/journal.pone.0217854.Peer-Reviewed Original Research
2007
Host feeding pattern of Culex quinquefasciatus (Diptera: Culicidae) and its role in transmission of West Nile virus in Harris County, Texas.
Molaei G, Andreadis T, Armstrong P, Bueno R, Dennett J, Real S, Sargent C, Bala A, Randle Y, Guzman H, da Rosa A, Wuithiranyagool T, Tesh R. Host feeding pattern of Culex quinquefasciatus (Diptera: Culicidae) and its role in transmission of West Nile virus in Harris County, Texas. American Journal Of Tropical Medicine And Hygiene 2007, 77: 73-81. PMID: 17620633, DOI: 10.4269/ajtmh.2007.77.73.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBirdsCatsCulexDogsFeeding BehaviorInsect VectorsMosquito ControlTexasWest Nile FeverWest Nile virusConceptsVertebrate hostsCytochrome b geneHost feeding patternsMammalian blood mealsOpportunistic feedersGray CatbirdsB geneAmerican robinsHouse finchesBlue jaysHouse sparrowsMosquito speciesAmerican crowsWNV infection ratesBlood mealPrincipal mosquito vectorCulex quinquefasciatus SayMosquito vectorsWest Nile virusPCR productsCulex quinquefasciatusMode of infectionQuinquefasciatus SayDomestic catsFeeding patterns
2006
Identification of avian- and mammalian-derived bloodmeals in Aedes vexans and Culiseta melanura (Diptera: Culicidae) and its implication for West Nile virus transmission in Connecticut, U.S.A.
Molaei G, Andreadis T. Identification of avian- and mammalian-derived bloodmeals in Aedes vexans and Culiseta melanura (Diptera: Culicidae) and its implication for West Nile virus transmission in Connecticut, U.S.A. Journal Of Medical Entomology 2006, 43: 1088-93. PMID: 17017250, DOI: 10.1603/0022-2585(2006)43[1088:ioaamb]2.0.co;2.Peer-Reviewed Original ResearchConceptsVertebrate bloodmealsAmerican robinsMixed bloodmealsCytochrome b geneHost-feeding patternsCuliseta melanuraAedes vexansVertebrate bloodMitochondrial DNAWood ThrushGray CatbirdsB geneMammalian hostsAvian hostsLarge mammalsAvian speciesMammalian bloodWest Nile virus transmissionEastern cottontailsBridge vectorsIndividual mosquitoesAmerican crowsMelanuraCulex vectorsVexans
2004
Outbreak of West Nile Virus in North America
Spielman A, Andreadis T, Apperson C, Cornel A, Day J, Edman J, Fish D, Harrington L, Kiszewski A, Lampman R, Lanzaro G, Matuschka F, Munstermann L, Nasci R, Norris D, Novak R, Pollack R, Reisen W, Reiter P, Savage H, Tabachnick W, Wesson D. Outbreak of West Nile Virus in North America. Science 2004, 306: 1473-1475. PMID: 15567836, DOI: 10.1126/science.306.5701.1473c.Peer-Reviewed Original Research
2001
West Nile Virus Surveillance in Connecticut in 2000: An Intense Epizootic without High Risk for Severe Human Disease - Volume 7, Number 4—August 2001 - Emerging Infectious Diseases journal - CDC
Hadler J, Nelson R, McCarthy T, Andreadis T, Lis M, French R, Beckwith W, Mayo D, Archambault G, Cartter M. West Nile Virus Surveillance in Connecticut in 2000: An Intense Epizootic without High Risk for Severe Human Disease - Volume 7, Number 4—August 2001 - Emerging Infectious Diseases journal - CDC. Emerging Infectious Diseases 2001, 7: 636-642. PMID: 11585525, PMCID: PMC2631747, DOI: 10.3201/eid0704.017406.Peer-Reviewed Original ResearchConceptsNeurologic illnessSeroprevalence surveyInfectious Diseases journal - CDCWN virusDead crowsWN virus infectionWest Nile virus surveillanceWest Nile virusProspective surveillanceSymptomatic personsVirus infectionHigh riskSurveillance findingsSevere human diseasesMosquito poolsNile virusVirus surveillanceIllnessVirusHospitalized humansAdult mosquito managementHuman diseasesSurveillanceFairfield CountyPersons
2000
Recovery and Identification of West Nile Virus from a Hawk in Winter
Garmendia A, Van Kruiningen H, French R, Anderson J, Andreadis T, Kumar A, West A. Recovery and Identification of West Nile Virus from a Hawk in Winter. Journal Of Clinical Microbiology 2000, 38: 3110-3111. PMID: 10921991, PMCID: PMC87202, DOI: 10.1128/jcm.38.8.3110-3111.2000.Peer-Reviewed Original ResearchConceptsWest Nile virusNile virusWest Nile virus antigenVero cellsRoutes of transmissionDemonstration of infectionEnzyme-linked immunosorbentFluorescent antibody testingAntibody testingInfected Vero cellsGlial cellsVirus antigenBrain homogenatesCytopathic changesPyknotic nucleiMultiple fociVirusViral particlesNS3 geneBrainMosquito seasonCellsRed-tailed hawksWestchester CountyCell lysates
1999
Isolation of West Nile Virus from Mosquitoes, Crows, and a Cooper's Hawk in Connecticut
Anderson J, Andreadis T, Vossbrinck C, Tirrell S, Wakem E, French R, Garmendia A, Van Kruiningen H. Isolation of West Nile Virus from Mosquitoes, Crows, and a Cooper's Hawk in Connecticut. Science 1999, 286: 2331-2333. PMID: 10600741, DOI: 10.1126/science.286.5448.2331.Peer-Reviewed Original Research