2021
Mitochondrial cristae-remodeling protein OPA1 in POMC neurons couples Ca2+ homeostasis with adipose tissue lipolysis
Gómez-Valadés AG, Pozo M, Varela L, Boudjadja MB, Ramírez S, Chivite I, Eyre E, Haddad-Tóvolli R, Obri A, Milà-Guasch M, Altirriba J, Schneeberger M, Imbernón M, Garcia-Rendueles AR, Gama-Perez P, Rojo-Ruiz J, Rácz B, Alonso MT, Gomis R, Zorzano A, D’Agostino G, Alvarez CV, Nogueiras R, Garcia-Roves PM, Horvath TL, Claret M. Mitochondrial cristae-remodeling protein OPA1 in POMC neurons couples Ca2+ homeostasis with adipose tissue lipolysis. Cell Metabolism 2021, 33: 1820-1835.e9. PMID: 34343501, PMCID: PMC8432968, DOI: 10.1016/j.cmet.2021.07.008.Peer-Reviewed Original ResearchConceptsProtein OPA1Mitochondrial CaMitochondrial cristae architectureAdipose tissue lipolysisKey metabolic sensorPOMC neuronsCellular metabolic adaptationTissue lipolysisCristae architectureMetabolic sensorNutrient availabilityWhite adipose tissue lipolysisAlpha-melanocyte stimulating hormoneGenetic inactivationNovel axisMitochondrial functionOPA1Metabolic adaptationMitochondrial cristaeDramatic alterationsMutant miceProopiomelanocortin neuronsLipolysis controlWAT lipolysisPharmacological blockade
2018
Mild Impairment of Mitochondrial OXPHOS Promotes Fatty Acid Utilization in POMC Neurons and Improves Glucose Homeostasis in Obesity
Timper K, Paeger L, Sánchez-Lasheras C, Varela L, Jais A, Nolte H, Vogt MC, Hausen AC, Heilinger C, Evers N, Pospisilik JA, Penninger JM, Taylor EB, Horvath TL, Kloppenburg P, Brüning JC. Mild Impairment of Mitochondrial OXPHOS Promotes Fatty Acid Utilization in POMC Neurons and Improves Glucose Homeostasis in Obesity. Cell Reports 2018, 25: 383-397.e10. PMID: 30304679, PMCID: PMC6349418, DOI: 10.1016/j.celrep.2018.09.034.Peer-Reviewed Original ResearchConceptsPOMC neuronsApoptosis-inducing factorImproved glucose metabolismFatty acid utilizationDecrease firingPomc-CreFatty acid metabolismHFD feedingReactive oxygen species formationSystemic glucoseHypothalamic proopiomelanocortinLean miceMitochondrial respirationObese miceObese conditionsInsulin sensitivityGlucose homeostasisGlucose metabolismMild impairmentOxygen species formationFiring propertiesNeuronsOxidative phosphorylationMicePartial impairmentInsulin regulates POMC neuronal plasticity to control glucose metabolism
Dodd GT, Michael NJ, Lee-Young RS, Mangiafico SP, Pryor JT, Munder AC, Simonds SE, Brüning JC, Zhang ZY, Cowley MA, Andrikopoulos S, Horvath TL, Spanswick D, Tiganis T. Insulin regulates POMC neuronal plasticity to control glucose metabolism. ELife 2018, 7: e38704. PMID: 30230471, PMCID: PMC6170188, DOI: 10.7554/elife.38704.Peer-Reviewed Original ResearchConceptsHepatic glucose productionPOMC neuronsSuch adaptive processesNutritional cuesGene expressionMolecular mechanismsGlucose metabolismInsulin receptorDiet-induced obesityTCPTPNeuronal plasticityAdaptive processHypothalamic neuronsNeuronal excitabilityGlucose productionMetabolismInsulinNeuronsRepressionNeural responsesObesityRegulationMechanismPlasticityExpression
2017
Plasticity of calcium-permeable AMPA glutamate receptors in Pro-opiomelanocortin neurons
Suyama S, Ralevski A, Liu ZW, Dietrich MO, Yada T, Simonds SE, Cowley MA, Gao XB, Diano S, Horvath TL. Plasticity of calcium-permeable AMPA glutamate receptors in Pro-opiomelanocortin neurons. ELife 2017, 6: e25755. PMID: 28762946, PMCID: PMC5538821, DOI: 10.7554/elife.25755.Peer-Reviewed Original ResearchConceptsExcitatory postsynaptic currentsPOMC neuronsCP-AMPARsFasted stateAMPAR-mediated excitatory postsynaptic currentsCalcium-permeable AMPA glutamate receptorsInhibition of EPSCsHigh-fat diet exposurePOMC neuronal activityPro-opiomelanocortin (POMC) neuronsCalcium-permeable AMPARsElevated leptin levelsAMPA glutamate receptorsAmplitude of mEPSCsFood deprivationEntry of calciumAMPA receptor complexesDiet exposureLeptin levelsPostsynaptic currentsEPSC amplitudeGlutamate receptorsNeuronal activityExtracellular calciumLinear current-voltage relationshipMitochondrial Dynamics Mediated by Mitofusin 1 Is Required for POMC Neuron Glucose-Sensing and Insulin Release Control
Ramírez S, Gómez-Valadés AG, Schneeberger M, Varela L, Haddad-Tóvolli R, Altirriba J, Noguera E, Drougard A, Flores-Martínez Á, Imbernón M, Chivite I, Pozo M, Vidal-Itriago A, Garcia A, Cervantes S, Gasa R, Nogueiras R, Gama-Pérez P, Garcia-Roves PM, Cano DA, Knauf C, Servitja JM, Horvath TL, Gomis R, Zorzano A, Claret M. Mitochondrial Dynamics Mediated by Mitofusin 1 Is Required for POMC Neuron Glucose-Sensing and Insulin Release Control. Cell Metabolism 2017, 25: 1390-1399.e6. PMID: 28591639, DOI: 10.1016/j.cmet.2017.05.010.Peer-Reviewed Original ResearchConceptsMitofusin 1Mitochondrial dynamicsGene expression programsNutrient sensing mechanismsExpression programsMitochondrial architectureMitochondrial oxygen fluxNutrient sensingMitochondrial flexibilityNutrient availabilityPancreatic β-cellsUnrecognized linkDefective insulin secretionOxygen species generationMetabolism controlΒ-cellsSubset of neuronsSystemic glucose metabolismPOMC neuronsCritical sensorsSpecies generationPrecise mechanismGlucose homeostasisEndothelial HIF-1α Enables Hypothalamic Glucose Uptake to Drive POMC Neurons
Varela L, Suyama S, Huang Y, Shanabrough M, Tschöp M, Gao XB, Giordano FJ, Horvath TL. Endothelial HIF-1α Enables Hypothalamic Glucose Uptake to Drive POMC Neurons. Diabetes 2017, 66: db161106. PMID: 28292966, PMCID: PMC5440016, DOI: 10.2337/db16-1106.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBehavior, AnimalBlotting, WesternEndotheliumEnergy MetabolismFood DeprivationGene Knockdown TechniquesGlucoseHyperphagiaHypothalamusHypoxia-Inducible Factor 1, alpha SubunitImmunohistochemistryMiceMicroscopy, ElectronMitochondriaNeuronsPatch-Clamp TechniquesPro-OpiomelanocortinReal-Time Polymerase Chain ReactionConceptsPOMC neuronsGlucose uptakePOMC neuronal activityHypothalamic proopiomelanocortin (POMC) neuronsHypoxia-inducible factor-1αProopiomelanocortin neuronsVascular impairmentGlucose administrationMetabolic disordersNeuronal activityMetabolic environmentFactor-1αImpaired functioningEndothelial cellsNeuronsFood deprivationVivoCentral controlHypothalamusMiceAdministrationUptakeImpairment
2015
Mitochondria in Control of Hypothalamic Metabolic Circuits
Nasrallah C, Horvath T. Mitochondria in Control of Hypothalamic Metabolic Circuits. 2015, 186-202. DOI: 10.1002/9781119017127.ch8.Peer-Reviewed Original ResearchPOMC neuronsNutritional statusBody nutritional statusAgRP neuronsGhrelin increasesLeptin levelsFood intakeCentral regulationGlucose levelsMetabolic disordersNeuronal functionPrimary siteLipid metabolismMetabolic principlesMitochondrial dysfunctionNeuronsCessation of feedingBioenergetic adaptationImportant contributorMitochondrial dynamicsMetabolic circuitsHypothalamusDysfunctionSatietyIntakeHypothalamic POMC neurons promote cannabinoid-induced feeding
Koch M, Varela L, Kim JG, Kim JD, Hernández-Nuño F, Simonds SE, Castorena CM, Vianna CR, Elmquist JK, Morozov YM, Rakic P, Bechmann I, Cowley MA, Szigeti-Buck K, Dietrich MO, Gao XB, Diano S, Horvath TL. Hypothalamic POMC neurons promote cannabinoid-induced feeding. Nature 2015, 519: 45-50. PMID: 25707796, PMCID: PMC4496586, DOI: 10.1038/nature14260.Peer-Reviewed Original ResearchConceptsPOMC neuronsΒ-endorphinHypothalamic pro-opiomelanocortin (POMC) neuronsOpioid peptide β-endorphinHypothalamic POMC neuronsPromotion of feedingPro-opiomelanocortin (POMC) neuronsCannabinoid receptor 1CB1R activityPOMC activitySated miceHormone releaseHypothalamic administrationFood intakeCentral regulationNeuronal activityParadoxical increaseCB1RReceptor 1POMC cellsNeuronsMitochondrial adaptationsDecreased activityPOMC geneUnsuspected role
2014
Mitochondrial dynamics in the central regulation of metabolism
Nasrallah CM, Horvath TL. Mitochondrial dynamics in the central regulation of metabolism. Nature Reviews Endocrinology 2014, 10: 650-658. PMID: 25200564, DOI: 10.1038/nrendo.2014.160.Peer-Reviewed Original ResearchConceptsPOMC neuronsMetabolic disordersPeripheral tissue functionsCentral melanocortin systemMitochondrial dynamicsProopiomelanocortin neuronsAnorexigenic responseOrexigenic responseHypothalamic neuronsCentral regulationMelanocortin systemNeuronsDistinct signaling pathwaysSignaling pathwaysMitochondrial fusionMolecular regulatorsTissue functionDistinct functionsDisordersFatty acidsMetabolismActivationObesityAppetiteResponsePPARγ ablation sensitizes proopiomelanocortin neurons to leptin during high-fat feeding
Long L, Toda C, Jeong JK, Horvath TL, Diano S. PPARγ ablation sensitizes proopiomelanocortin neurons to leptin during high-fat feeding. Journal Of Clinical Investigation 2014, 124: 4017-4027. PMID: 25083994, PMCID: PMC4151211, DOI: 10.1172/jci76220.Peer-Reviewed Original ResearchConceptsHigh-fat dietPOMC neuronsFood intakeImproved glucose metabolismHigh-fat feedingWhole-body energy balanceBody weight gainProopiomelanocortin neuronsPeripheral administrationFat massLeptin sensitivityControl animalsGlucose metabolismBody weightPPARγ activatorsLocomotor activityEnergy homeostasisPPARγWeight gainNeuronsSelective ablationEnergy expenditureIntakeNuclear receptorsMiceNeonatal Insulin Action Impairs Hypothalamic Neurocircuit Formation in Response to Maternal High-Fat Feeding
Vogt MC, Paeger L, Hess S, Steculorum SM, Awazawa M, Hampel B, Neupert S, Nicholls HT, Mauer J, Hausen AC, Predel R, Kloppenburg P, Horvath TL, Brüning JC. Neonatal Insulin Action Impairs Hypothalamic Neurocircuit Formation in Response to Maternal High-Fat Feeding. Cell 2014, 156: 495-509. PMID: 24462248, PMCID: PMC4101521, DOI: 10.1016/j.cell.2014.01.008.Peer-Reviewed Original ResearchConceptsPOMC neuronsMaternal high-fat diet (HFD) feedingOrexigenic agouti-related peptide (AgRP) neuronsHealth outcomesMaternal high-fat feedingHigh-fat diet feedingImpaired glucose-stimulated insulin secretionMaternal HFD feedingGlucose-stimulated insulin secretionImpaired glucose homeostasisOffspring health outcomesHigh-fat feedingPOMC projectionsParasympathetic innervationHFD feedingMaternal overnutritionPeptide neuronsAbnormal insulinAnorexigenic proopiomelanocortinParaventricular nucleusDiet feedingInsulin secretionMelanocortin circuitryNeuropeptide expressionLong-term effects
2013
Mitofusin 2 in POMC Neurons Connects ER Stress with Leptin Resistance and Energy Imbalance
Schneeberger M, Dietrich MO, Sebastián D, Imbernón M, Castaño C, Garcia A, Esteban Y, Gonzalez-Franquesa A, Rodríguez IC, Bortolozzi A, Garcia-Roves PM, Gomis R, Nogueiras R, Horvath TL, Zorzano A, Claret M. Mitofusin 2 in POMC Neurons Connects ER Stress with Leptin Resistance and Energy Imbalance. Cell 2013, 155: 172-187. PMID: 24074867, PMCID: PMC3839088, DOI: 10.1016/j.cell.2013.09.003.Peer-Reviewed Original ResearchConceptsHypothalamic ER stressER stress-induced leptin resistanceLeptin resistanceMitofusin 2ER stressMitochondria-endoplasmic reticulum interactionAnorexigenic pro-opiomelanocortin (POMC) neuronsPro-opiomelanocortin (POMC) neuronsDiet-induced obesityMitochondria-ER contactsSystemic energy balancePOMC neuronsMetabolic alterationsCausative factorsEnergy expenditurePOMC processingObesityUnderlying mechanismCrucial involvementNeuronsEnergy imbalanceEssential regulatorCritical roleHyperphagiaHypothalamus
2012
Limitations in anti-obesity drug development: the critical role of hunger-promoting neurons
Dietrich MO, Horvath TL. Limitations in anti-obesity drug development: the critical role of hunger-promoting neurons. Nature Reviews Drug Discovery 2012, 11: 675-691. PMID: 22858652, DOI: 10.1038/nrd3739.Peer-Reviewed Original ResearchConceptsNPY/AgRP neuronsNegative energy balanceSevere side effectsAgRP neuronsPOMC neuronsPositive energy balanceChronic disordersPeripheral tissuesReactive oxygen speciesSide effectsLong-term positive energy balanceCalorie restrictionAnti-obesity drug developmentBehavioral interventionsIntense behavioral interventionsPro-opiomelanocortin (POMC) neuronsChronic metabolic disorderLong-term treatmentWhite adipose tissueAlternative therapeutic approachAnti-obesity therapiesPromotion of satietyNew drug therapiesPopulations of neuronsHigher brain functionsmTOR Signaling Fades POMC Neurons during Aging
Kim JG, Horvath TL. mTOR Signaling Fades POMC Neurons during Aging. Neuron 2012, 75: 356-357. PMID: 22884318, DOI: 10.1016/j.neuron.2012.07.017.Peer-Reviewed Original ResearchLoss of Autophagy in Pro-opiomelanocortin Neurons Perturbs Axon Growth and Causes Metabolic Dysregulation
Coupé B, Ishii Y, Dietrich MO, Komatsu M, Horvath TL, Bouret SG. Loss of Autophagy in Pro-opiomelanocortin Neurons Perturbs Axon Growth and Causes Metabolic Dysregulation. Cell Metabolism 2012, 15: 247-255. PMID: 22285542, PMCID: PMC3278575, DOI: 10.1016/j.cmet.2011.12.016.Peer-Reviewed Original ResearchMeSH KeywordsAdiposityAnimalsArcuate Nucleus of HypothalamusAutophagyAutophagy-Related Protein 7AxonsBody WeightGlucose IntoleranceImmunoblottingMetabolic Networks and PathwaysMiceMicroscopy, ElectronMicrotubule-Associated ProteinsNeuronsPro-OpiomelanocortinTranscription Factor TFIIHTranscription FactorsUbiquitinConceptsPOMC neuronsHypothalamic melanocortin systemPathogenesis of obesityImportant intracellular mechanismNormal metabolic regulationP62-positive aggregatesFunctional neural systemsGlucose intoleranceAge-dependent accumulationNeonatal lifeAxonal projectionsMetabolic dysregulationMetabolic impairmentMelanocortin systemEssential autophagy geneBody weightLoss of autophagyMajor negative regulatorAxon growthIntracellular mechanismsNeuronsAutophagy deficiencyNeural developmentDirect genetic evidenceAtg7
2011
Peroxisome proliferation–associated control of reactive oxygen species sets melanocortin tone and feeding in diet-induced obesity
Diano S, Liu ZW, Jeong JK, Dietrich MO, Ruan HB, Kim E, Suyama S, Kelly K, Gyengesi E, Arbiser JL, Belsham DD, Sarruf DA, Schwartz MW, Bennett AM, Shanabrough M, Mobbs CV, Yang X, Gao XB, Horvath TL. Peroxisome proliferation–associated control of reactive oxygen species sets melanocortin tone and feeding in diet-induced obesity. Nature Medicine 2011, 17: 1121-1127. PMID: 21873987, PMCID: PMC3388795, DOI: 10.1038/nm.2421.Peer-Reviewed Original ResearchNicotine Decreases Food Intake Through Activation of POMC Neurons
Mineur YS, Abizaid A, Rao Y, Salas R, DiLeone RJ, Gündisch D, Diano S, De Biasi M, Horvath TL, Gao XB, Picciotto MR. Nicotine Decreases Food Intake Through Activation of POMC Neurons. Science 2011, 332: 1330-1332. PMID: 21659607, PMCID: PMC3113664, DOI: 10.1126/science.1201889.Peer-Reviewed Original ResearchConceptsFood intakePOMC neuronsNicotine decreases food intakeDecrease food intakePro-opiomelanocortin (POMC) neuronsΑ3β4 nicotinic acetylcholine receptorsHypothalamic melanocortin systemNicotine-induced decreasesMelanocortin-4 receptorNicotinic acetylcholine receptorsAnorexic effectDecrease appetiteSmoking cessationSynaptic mechanismsMelanocortin systemNovel treatmentsBody weightAcetylcholine receptorsNeurobiological mechanismsNeuronsIntakeSubsequent activationAppetiteActivationReceptors
2010
Estrogen Promotes Parvalbumin Expression in Arcuate Nucleus POMC Neurons
Sotonyi P, Gao Q, Bechmann I, Horvath TL. Estrogen Promotes Parvalbumin Expression in Arcuate Nucleus POMC Neurons. Reproductive Sciences 2010, 17: 1077-1080. PMID: 20713969, DOI: 10.1177/1933719110379651.Peer-Reviewed Original ResearchConceptsPOMC neuronsArcuate nucleus neuronsLean body massSuppression of feedingSuppress appetiteParvalbumin expressionEstrogen treatmentHypothalamic neuronsArcuate nucleusNeuronal degenerationNucleus neuronsFemale miceCalcium overloadExcitatory activityCalcium-binding proteinsCalcium influxReceptor presenceCalcium entrySustained satietyNeuronsEnergy expenditureEstradiolParvalbuminAppetiteBody massGonadotropin-Releasing Hormone Fibers Contact POMC Neurons in the Hypothalamic Arcuate Nucleus
Sotonyi P, Mezei G, Racz B, Dallman MF, Abizaid A, Horvath TL. Gonadotropin-Releasing Hormone Fibers Contact POMC Neurons in the Hypothalamic Arcuate Nucleus. Reproductive Sciences 2010, 17: 1024-1028. PMID: 20713970, DOI: 10.1177/1933719110378346.Peer-Reviewed Original ResearchConceptsArcuate nucleusGonadotropin-releasing hormone (GnRH) neuronsPOMC cell bodiesEnergy expenditureHypothalamic arcuate nucleusHypothalamic neuronal populationsMelanocyte stimulating hormoneHormone neuronsPOMC neuronsAnorexigenic proopiomelanocortinStimulating hormoneAnatomical proximityAxon terminalsGonadal axisGlucose homeostasisPeripheral signalsNeuronal populationsCell bodiesDirect appositionGnRHEnergy metabolismNeuronsMetabolic stateHormoneProopiomelanocortinCorticosterone Regulates Synaptic Input Organization of POMC and NPY/AgRP Neurons in Adult Mice
Gyengesi E, Liu ZW, D'Agostino G, Gan G, Horvath TL, Gao XB, Diano S. Corticosterone Regulates Synaptic Input Organization of POMC and NPY/AgRP Neurons in Adult Mice. Endocrinology 2010, 151: 5395-5402. PMID: 20843996, PMCID: PMC2954711, DOI: 10.1210/en.2010-0681.Peer-Reviewed Original ResearchConceptsNPY/AgRP neuronsSynaptic input organizationSham-operated controlsAgRP neuronsADX miceCorticosterone replacementNeuropeptide YArcuate nucleusSynaptic arrangementsInput organizationPair-fed control animalsPutative excitatory synapsesPutative inhibitory synapsesHypothalamic arcuate nucleusEffects of adrenalectomySham-operated animalsNumber of synapsesPOMC neuronsProtein (AgRP) neuronsOrexigenic actionMembrane potentialSynaptic analysisInhibitory synapsesExcitatory synapsesFood intake