2022
Human neutrophil development and functionality are enabled in a humanized mouse model
Zheng Y, Sefik E, Astle J, Karatepe K, Öz HH, Solis AG, Jackson R, Luo HR, Bruscia EM, Halene S, Shan L, Flavell RA. Human neutrophil development and functionality are enabled in a humanized mouse model. Proceedings Of The National Academy Of Sciences Of The United States Of America 2022, 119: e2121077119. PMID: 36269862, PMCID: PMC9618085, DOI: 10.1073/pnas.2121077119.Peer-Reviewed Original ResearchConceptsHumanized mouse modelMouse modelHuman immune systemHuman neutrophilsImmune systemFunctional human immune systemGranulocyte colony-stimulating factorUnique mouse modelColony-stimulating factorHuman G-CSFMISTRG miceG-CSF receptor geneBacterial burdenInfectious challengeG-CSFNeutrophilsMiceNeutrophil developmentReceptor geneDisease
2017
Rusty neutrophils in β-thalassemia: no traction!
Gaines P, Halene S. Rusty neutrophils in β-thalassemia: no traction! Blood 2017, 129: 3046-3047. PMID: 28596437, DOI: 10.1182/blood-2017-04-776393.Commentaries, Editorials and Letters
2015
The regulatory role of serum response factor pathway in neutrophil inflammatory response
Taylor A, Halene S. The regulatory role of serum response factor pathway in neutrophil inflammatory response. Current Opinion In Hematology 2015, 22: 67-73. PMID: 25402621, PMCID: PMC4374983, DOI: 10.1097/moh.0000000000000099.Peer-Reviewed Original ResearchConceptsSerum response factor pathwayRole of SRFLinear actin polymerizationEssential transcription factorCell-cell interactionsRas homolog family memberAberrant myeloid differentiationFactor pathwayT cell developmentActin cytoskeletonMultiple complex rolesRegulated processSRF pathwayTranscription factorsDiaphanous 1Actin polymerizationMyeloid cell functionChromosome 5Integrin activationIntegrin complexRegulatory roleMyeloid differentiationCommon genetic aberrationsLeukocyte adhesion deficiencyAdaptive immune system
2014
SRF is required for neutrophil migration in response to inflammation
Taylor A, Tang W, Bruscia EM, Zhang PX, Lin A, Gaines P, Wu D, Halene S. SRF is required for neutrophil migration in response to inflammation. Blood 2014, 123: 3027-3036. PMID: 24574460, PMCID: PMC4014845, DOI: 10.1182/blood-2013-06-507582.Peer-Reviewed Original ResearchMeSH KeywordsActin CytoskeletonActinsAnimalsBlotting, WesternCell AdhesionCell MovementChemokinesGene ExpressionInflammationIntegrinsMiceMice, KnockoutMice, TransgenicMicroscopy, ConfocalN-Formylmethionine Leucyl-PhenylalanineNeutrophilsPolymerizationReverse Transcriptase Polymerase Chain ReactionSerum Response FactorSignal TransductionConceptsKO neutrophilsNeutrophil functionNormal neutrophil numbersSerum response factorSites of inflammationRole of SRFLoss of SRFNeutrophil numbersNeutrophil migrationMalignant processNeutrophilsCytokine stimuliChemokine gradientsCell functionExpression levelsIntegrin expression levelsInflammationMicePrimary defenseMegakaryocyte maturationNormal cell functionVivoCellular adhesionMaster regulatorIntegrin activation
2010
Different Roles of G Protein Subunits β1 and β2 in Neutrophil Function Revealed by Gene Expression Silencing in Primary Mouse Neutrophils*
Zhang Y, Tang W, Jones MC, Xu W, Halene S, Wu D. Different Roles of G Protein Subunits β1 and β2 in Neutrophil Function Revealed by Gene Expression Silencing in Primary Mouse Neutrophils*. Journal Of Biological Chemistry 2010, 285: 24805-24814. PMID: 20525682, PMCID: PMC2915716, DOI: 10.1074/jbc.m110.142885.Peer-Reviewed Original ResearchConceptsGene expressionShort hairpin RNAPrimary mouse neutrophilsHairpin RNADirectional cell migrationFluorescent marker proteinsMouse neutrophilsMouse bone marrow cellsHost innate immunityDouble knockdownExcellent systemIngested bacteriaCell migrationMarker proteinsDivergent rolesKnockdownHematopoietic cellsHematopoietic systemBone marrow cellsSubunits β1Retroviral vectorsInnate immunityBacterial phagocytosisRNAExpression
2009
C/EBPε directs granulocytic-vs-monocytic lineage determination and confers chemotactic function via Hlx
Halene S, Gaines P, Sun H, Zibello T, Lin S, Khanna-Gupta A, Williams SC, Perkins A, Krause D, Berliner N. C/EBPε directs granulocytic-vs-monocytic lineage determination and confers chemotactic function via Hlx. Experimental Hematology 2009, 38: 90-103.e4. PMID: 19925846, PMCID: PMC2827304, DOI: 10.1016/j.exphem.2009.11.004.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBone Marrow CellsCCAAT-Enhancer-Binding ProteinsCell DifferentiationCell LineChemotaxis, LeukocyteGene ExpressionGranulocyte-Macrophage Colony-Stimulating FactorGranulocytesHematopoietic Stem CellsHomeodomain ProteinsMiceMice, KnockoutMonocytesMyelopoiesisNeutrophilsReceptors, ChemokineTranscription FactorsTransduction, GeneticConceptsKO cellsNew regulatory functionCommon myeloid progenitorsNeutrophil-specific granule deficiencyProgenitor cell lineCell linesRestoration of expressionDifferentiated cell linesSpecific granule deficiencyLineage-specific cell surface antigensLineage decisionsLineage determinationEpsilon geneCCAAT enhancerDeficiency phenotypeRegulatory functionsChemotaxis defectIntermediate cell typeKO bone marrowPerformed expressionNeutrophil differentiationCell typesFunctional studiesNeutrophil maturationMyeloid progenitors