2020
Unstimulated, Serum-free Cultures of Retinal Pigment Epithelium Excrete Large Mounds of Drusen-like Deposits
Chen X, Singh D, Adelman RA, Rizzolo LJ. Unstimulated, Serum-free Cultures of Retinal Pigment Epithelium Excrete Large Mounds of Drusen-like Deposits. Current Eye Research 2020, 45: 1390-1394. PMID: 32202447, DOI: 10.1080/02713683.2020.1740744.Peer-Reviewed Original ResearchMeSH KeywordsActinsApolipoproteins ECalciumCell Culture TechniquesCell LineCell ProliferationCoculture TechniquesCulture Media, Serum-FreeElectric ImpedanceHumansInduced Pluripotent Stem CellsLipid MetabolismRetinal DrusenRetinal Pigment EpitheliumStem CellsTight JunctionsTissue Inhibitor of Metalloproteinase-3VitronectinConceptsRetinal pigment epithelium
2019
Disease-associated mutations of claudin-19 disrupt retinal neurogenesis and visual function
Wang SB, Xu T, Peng S, Singh D, Ghiassi-Nejad M, Adelman RA, Rizzolo LJ. Disease-associated mutations of claudin-19 disrupt retinal neurogenesis and visual function. Communications Biology 2019, 2: 113. PMID: 30937396, PMCID: PMC6433901, DOI: 10.1038/s42003-019-0355-0.Peer-Reviewed Original ResearchConceptsRetinal pigment epitheliumClaudin-19Retinal neurogenesisP1 waveOuter nuclear layerRPE signature genesARPE19 cell lineOcular involvementKidney diseaseVisual functionFamilial hypomagnesaemiaNuclear layerBipolar cellsNewborn miceOcular diseasesPigment epitheliumRetinal isomeraseDiseaseMiceHuman induced pluripotent cellsRetinal differentiationSignature genesCell linesNeurogenesisInduced pluripotent cells
2017
A biodegradable scaffold enhances differentiation of embryonic stem cells into a thick sheet of retinal cells
Singh D, Wang SB, Xia T, Tainsh L, Ghiassi-Nejad M, Xu T, Peng S, Adelman RA, Rizzolo LJ. A biodegradable scaffold enhances differentiation of embryonic stem cells into a thick sheet of retinal cells. Biomaterials 2017, 154: 158-168. PMID: 29128844, DOI: 10.1016/j.biomaterials.2017.10.052.Peer-Reviewed Original ResearchConceptsRetinal degenerationNeurosensory retinaRetinal cellsHost retinal pigment epitheliumStem cellsOuter nuclear layerRetinal pigment epitheliumRetinal cell typesElaborate arborsQuantitative RT-PCRLeading causeImmune responseNuclear layerMouse modelPigment epitheliumSubretinal spaceForebrain cellsMinimal immune responseTherapeutic agentsRetinal laminationRT-PCRDegenerationRetinaRetinal organoidsConfocal immunocytochemistryNovel therapeutics for Stargardt disease
Lu LJ, Liu J, Adelman RA. Novel therapeutics for Stargardt disease. Graefe's Archive For Clinical And Experimental Ophthalmology 2017, 255: 1057-1062. PMID: 28285324, DOI: 10.1007/s00417-017-3619-8.Peer-Reviewed Original ResearchConceptsStargardt diseaseVision lossABCA4 geneStem cell transplantationSevere vision lossPromising treatment candidateNovel therapeutic strategiesRetinal pigment epitheliumStem cell therapyVisual acuityStandard treatmentMacular degenerationTreatment candidatesHESC-RPE cellsStargardt patientsTherapeutic strategiesPharmacological agentsPigment epitheliumMacular dystrophyNovel therapeuticsPatientsDiseaseVisual cyclePrevalent formSecond decade
2015
CHOROIDAL THICKNESS MEASURED WITH SWEPT SOURCE OPTICAL COHERENCE TOMOGRAPHY BEFORE AND AFTER VITRECTOMY WITH INTERNAL LIMITING MEMBRANE PEELING FOR IDIOPATHIC EPIRETINAL MEMBRANES
Michalewska Z, Michalewski J, Adelman RA, Zawilak E, Nawrocki J. CHOROIDAL THICKNESS MEASURED WITH SWEPT SOURCE OPTICAL COHERENCE TOMOGRAPHY BEFORE AND AFTER VITRECTOMY WITH INTERNAL LIMITING MEMBRANE PEELING FOR IDIOPATHIC EPIRETINAL MEMBRANES. Retina 2015, 35: 487-491. PMID: 25322467, DOI: 10.1097/iae.0000000000000350.Peer-Reviewed Original ResearchConceptsIdiopathic epiretinal membraneOuter choroidoscleral boundaryChoroidal thicknessFellow eyesEpiretinal membraneMembrane peelingINTERNAL LIMITING MEMBRANE PEELINGPatient's fellow eyeUnaffected fellow eyesPars plana vitrectomyChoroidal thickness measurementsRetinal pigment epitheliumSource optical coherence tomographyOptical coherence tomographySuprachoroidal layerOperated eyesRetinal arteryPlana vitrectomyProspective studyERM removalPigment epitheliumHyperreflective bandSource optical coherence tomography imagesCoherence tomographySuprachoroidal space
2013
Engineering a Blood-Retinal Barrier With Human Embryonic Stem Cell-Derived Retinal Pigment Epithelium: Transcriptome and Functional Analysis
Peng S, Gan G, Qiu C, Zhong M, An H, Adelman RA, Rizzolo LJ. Engineering a Blood-Retinal Barrier With Human Embryonic Stem Cell-Derived Retinal Pigment Epithelium: Transcriptome and Functional Analysis. Stem Cells Translational Medicine 2013, 2: 534-544. PMID: 23734062, PMCID: PMC3697821, DOI: 10.5966/sctm.2012-0134.Peer-Reviewed Original ResearchConceptsRetinal pigment epitheliumBlood-retinal barrierHuman retinal pigment epitheliumPigment epitheliumHuman fetal retinal pigment epitheliumOuter blood-retinal barrierTight junctionsFetal retinal pigment epitheliumEmbryonic stem cell-derived retinal pigment epitheliumAdult retinal pigment epitheliumQuantitative reverse transcription polymerase chain reactionMaturation of hESCReverse transcription-polymerase chain reactionTranscription-polymerase chain reactionHuman embryonic stem cell-derived retinal pigment epitheliumStem cell-derived retinal pigment epitheliumRPE replacement therapyPanel of genesReplacement therapyAnimal modelsHuman embryonic stem cellsRetinal degenerationRPE functionSerum-free mediumHuman retina
2011
Claudin-19 and the Barrier Properties of the Human Retinal Pigment Epithelium
Peng S, Rao VS, Adelman RA, Rizzolo LJ. Claudin-19 and the Barrier Properties of the Human Retinal Pigment Epithelium. Investigative Ophthalmology & Visual Science 2011, 52: 1392-1403. PMID: 21071746, PMCID: PMC3101667, DOI: 10.1167/iovs.10-5984.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsMeSH KeywordsCells, CulturedClaudinsElectric ImpedanceFluorescent Antibody Technique, IndirectGene SilencingGestational AgeHumansImmunoblottingMembrane ProteinsOccludinPermeabilityPolyethylene GlycolsRetinal Pigment EpitheliumReverse Transcriptase Polymerase Chain ReactionRNA, MessengerRNA, Small InterferingTight JunctionsConceptsRetinal pigment epitheliumTransepithelial electrical resistanceHuman retinal pigment epitheliumHuman fetal RPECultured human fetal retinal pigment epitheliumPigment epitheliumClaudin-19Retinal sideHuman fetal retinal pigment epitheliumSpread of edemaFetal retinal pigment epitheliumFetal human retinal pigment epitheliumEffect of serumTight junctionsRPE permeabilityQuantitative RT-PCRChoroidal capillariesSubpopulation of cellsClaudin-1RPE barrierClaudin-3RPE tight junctionsRT-PCREpitheliumSerum
2010
Inverted Internal Limiting Membrane Flap Technique for Large Macular Holes
Michalewska Z, Michalewski J, Adelman RA, Nawrocki J. Inverted Internal Limiting Membrane Flap Technique for Large Macular Holes. Ophthalmology 2010, 117: 2018-2025. PMID: 20541263, DOI: 10.1016/j.ophtha.2010.02.011.Peer-Reviewed Original ResearchConceptsLarge macular holesILM flap techniqueMacular hole closureMembrane flap techniqueMacular holeGroup 2Group 1Visual acuityFlap techniqueOptical coherence tomographySpectral optical coherence tomographyAnatomic outcomesHole closureStandard macular hole surgeryInternal Limiting Membrane Flap TechniqueCoherence tomographyVisual acuity 12 monthsPars plana vitrectomyMacular hole surgeryFluid-air exchangeLimited visual acuityRetinal pigment epitheliumSurgical failureFoveal anatomyPlana vitrectomy