2024
VPS13B is localized at the interface between Golgi cisternae and is a functional partner of FAM177A1
Ugur B, Schueder F, Shin J, Hanna M, Wu Y, Leonzino M, Su M, McAdow A, Wilson C, Postlethwait J, Solnica-Krezel L, Bewersdorf J, De Camilli P. VPS13B is localized at the interface between Golgi cisternae and is a functional partner of FAM177A1. Journal Of Cell Biology 2024, 223: e202311189. PMID: 39331042, PMCID: PMC11451052, DOI: 10.1083/jcb.202311189.Peer-Reviewed Original ResearchConceptsLipid transportGolgi complex proteinGolgi subcompartmentsGolgi membranesGolgi cisternaeProtein familyFunctional partnersGolgi complexKO cellsComplex proteinsFAM177A1GolgiVPS13BAdjacent membranesMutationsProteinCohen syndromeLipidOrthologsInteractorsBrefeldinMembraneOrganellesSubcompartmentsDevelopmental disorders
2023
RBG Motif Bridge-Like Lipid Transport Proteins: Structure, Functions, and Open Questions
Hanna M, Guillén-Samander A, De Camilli P. RBG Motif Bridge-Like Lipid Transport Proteins: Structure, Functions, and Open Questions. Annual Review Of Cell And Developmental Biology 2023, 39: 409-434. PMID: 37406299, DOI: 10.1146/annurev-cellbio-120420-014634.Peer-Reviewed Original ResearchLipid transfer proteinMembrane contact sitesVesicle-mediated trafficTransport of lipidsPutative physiological roleEukaryotic cellsEndocytic pathwayContact sitesLipid transportPhysiological roleTransfer proteinProteinHydrophobic channelRod-like structureLipidsEntire lengthDevelopmental disordersCytosolMutationsNew familyTransportPathwayMechanismMembraneCellsATG9 vesicles comprise the seed membrane of mammalian autophagosomes
Olivas T, Wu Y, Yu S, Luan L, Choi P, Guinn E, Nag S, De Camilli P, Gupta K, Melia T. ATG9 vesicles comprise the seed membrane of mammalian autophagosomes. Journal Of Cell Biology 2023, 222: e202208088. PMID: 37115958, PMCID: PMC10148236, DOI: 10.1083/jcb.202208088.Peer-Reviewed Original ResearchConceptsAtg9 vesiclesMammalian autophagosomesStyrene maleic acid lipid particlesLipid scramblase activityLC3-IIAutophagosomes formAutophagosome membraneMature autophagosomesScramblase activityAutophagosome formationAtg9Lipid transportMembrane growthAutophagosomesNanoscale organizationProtein-mediated transferProteinMembrane surface areaOrganellesVesiclesSeed membraneMembraneLipid particlesLipidsDifferent stages
2022
Novel pathways of intracellular membrane lipid transport and neurodegenerative diseases
De Camilli P. Novel pathways of intracellular membrane lipid transport and neurodegenerative diseases. The FASEB Journal 2022, 36 DOI: 10.1096/fasebj.2022.36.s1.0i152.ChaptersFamily proteinsLipid transportMembrane lipid transportMembrane contact sitesLipid binding modulesLipid transport proteinsLipid trafficRod-like proteinsBinding modulesHydrophobic grooveTransport proteinsContact sitesMembrane lipidsFunction mutationsLipid transferNovel pathwayNeurodevelopmental diseasesProteinVesicular carriersFamily resultsNeurodegenerative diseasesChorea-AcanthocytosisPotential roleNew mechanismMembraneSHIP164 is a chorein motif lipid transfer protein that controls endosome–Golgi membrane traffic
Hanna MG, Suen PH, Wu Y, Reinisch KM, De Camilli P. SHIP164 is a chorein motif lipid transfer protein that controls endosome–Golgi membrane traffic. Journal Of Cell Biology 2022, 221: e202111018. PMID: 35499567, PMCID: PMC9067936, DOI: 10.1083/jcb.202111018.Peer-Reviewed Original ResearchConceptsMannose-6-phosphate receptorCation-independent mannose-6-phosphate receptorMembrane contact sitesEarly endocytic pathwayGolgi membrane trafficLipid transfer proteinLipid transfer propertiesProtein-lipid ratioMembrane cargoMembrane trafficEndocytic membranesVesicular trafficRetrograde trafficEndocytic pathwayFunctional characterizationContact sitesMembranous organellesGolgi complexVesicle clustersCellular membranesTransfer proteinProteinLipid compositionOrganellesMembrane
2019
PDZD8 mediates a Rab7-dependent interaction of the ER with late endosomes and lysosomes
Guillén-Samander A, Bian X, De Camilli P. PDZD8 mediates a Rab7-dependent interaction of the ER with late endosomes and lysosomes. Proceedings Of The National Academy Of Sciences Of The United States Of America 2019, 116: 22619-22623. PMID: 31636202, PMCID: PMC6842579, DOI: 10.1073/pnas.1913509116.Peer-Reviewed Original ResearchConceptsEndoplasmic reticulumLipid transportLate endosomes/lysosomesIntrinsic membrane proteinsLipid transport proteinsEndosomes/lysosomesEndocytic membranesDomain familyMembrane proteinsLate endosomesEndocytic flowMolecular inventoryTransport proteinsPDZD8ProteinLysosomesMembraneEndosomesAdjacent bilayersReticulum
2017
Contacts between the endoplasmic reticulum and other membranes in neurons
Wu Y, Whiteus C, Xu CS, Hayworth KJ, Weinberg RJ, Hess HF, De Camilli P. Contacts between the endoplasmic reticulum and other membranes in neurons. Proceedings Of The National Academy Of Sciences Of The United States Of America 2017, 114: e4859-e4867. PMID: 28559323, PMCID: PMC5474793, DOI: 10.1073/pnas.1701078114.Peer-Reviewed Original ResearchConceptsEndoplasmic reticulumER–plasma membrane contactsER-PM contactsMembrane contactSmaller focal contactsRegulation of CaInterorganelle communicationOrganelle biogenesisDifferent neuronal compartmentsCell physiologyIntracellular membranesFocal contactsMultivesicular bodiesER contactsIntracellular organellesER cisternaeLipid homeostasisBiochemical studiesTubulovesicular structuresMembrane appositionNeuronal compartmentsImportant functionsMitochondriaReticulumMembrane
2016
Endosome-ER Contacts Control Actin Nucleation and Retromer Function through VAP-Dependent Regulation of PI4P
Dong R, Saheki Y, Swarup S, Lucast L, Harper JW, De Camilli P. Endosome-ER Contacts Control Actin Nucleation and Retromer Function through VAP-Dependent Regulation of PI4P. Cell 2016, 166: 408-423. PMID: 27419871, PMCID: PMC4963242, DOI: 10.1016/j.cell.2016.06.037.Peer-Reviewed Original Research
2015
SMP-domain proteins at membrane contact sites: Structure and function
Reinisch KM, De Camilli P. SMP-domain proteins at membrane contact sites: Structure and function. Biochimica Et Biophysica Acta 2015, 1861: 924-927. PMID: 26686281, PMCID: PMC4902782, DOI: 10.1016/j.bbalip.2015.12.003.Peer-Reviewed Original ResearchConceptsMembrane contact sitesContact sitesAnant K. MenonCellular lipid landscapeTim P. LevineER-mitochondrial contactsSMP domainLipid landscapeComplex subunitsPlasma membraneMolecular basisLipid transportersEndoplasmic reticulumProteinRecent discoveryMembraneSuch sitesSitesSubunitsReticulumTransportersGlycerolipidsRegulationElucidationSpecial issueThe leukodystrophy protein FAM126A (hyccin) regulates PtdIns(4)P synthesis at the plasma membrane
Baskin JM, Wu X, Christiano R, Oh MS, Schauder CM, Gazzerro E, Messa M, Baldassari S, Assereto S, Biancheri R, Zara F, Minetti C, Raimondi A, Simons M, Walther TC, Reinisch KM, De Camilli P. The leukodystrophy protein FAM126A (hyccin) regulates PtdIns(4)P synthesis at the plasma membrane. Nature Cell Biology 2015, 18: 132-138. PMID: 26571211, PMCID: PMC4689616, DOI: 10.1038/ncb3271.Peer-Reviewed Original ResearchPhosphoinositide Signaling in the Control of Membrane Dynamics and Interactions
De Camilli P. Phosphoinositide Signaling in the Control of Membrane Dynamics and Interactions. The FASEB Journal 2015, 29 DOI: 10.1096/fasebj.29.1_supplement.90.1.Peer-Reviewed Original ResearchPlasma membraneEndoplasmic reticulumIntrinsic membrane proteinsKey regulatory roleIntracellular second messengerMembrane identityE-SytsExtended synaptotagminsDifferent phosphoinositidesEndocytic membranesPutative functionsMembrane proteinsCell physiologyMembrane dynamicsCytosolic proteinsSecond messengerRegulatory rolePhosphatidyl inositolPhosphoinositideCell membraneInositol groupProteinMembranePhosphorylated metabolitesCa 2
2014
Manipulation of Plasma Membrane Phosphoinositides Using Photoinduced Protein–Protein Interactions
Idevall-Hagren O, De Camilli P. Manipulation of Plasma Membrane Phosphoinositides Using Photoinduced Protein–Protein Interactions. Methods In Molecular Biology 2014, 1148: 109-128. PMID: 24718798, DOI: 10.1007/978-1-4939-0470-9_8.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsArabidopsis ProteinsCatalytic DomainCell MembraneChlorocebus aethiopsCOS CellsCryptochromesHeLa CellsHumansLightMiceMolecular Sequence DataPhosphatidylinositolsPhosphoric Monoester HydrolasesPhotochemical ProcessesProtein Interaction Domains and MotifsProtein MultimerizationRecombinant Fusion ProteinsConceptsPlasma membraneCryptochrome 2Plasma membrane phosphatidylinositolProtein-protein interactionsLight-dependent conversionLipid-binding domainLive-cell imagingCritical regulatory roleMembrane lipid metabolismPhosphoinositide speciesSpatiotemporal regulationDimerization moduleCell physiologyMembrane phosphatidylinositolRegulatory roleTypes of cellsInositol phospholipidsPhosphorylated productsDimerization methodLipid metabolismMembraneCIB1DephosphorylationPhosphatidylinositolPhosphoinositide
2009
An electrostatic switch displaces phosphatidylinositol phosphate kinases from the membrane during phagocytosis
Fairn G, Ogata K, Botelho R, Stahl P, Anderson R, De Camilli P, Meyer T, Wodak S, Grinstein S. An electrostatic switch displaces phosphatidylinositol phosphate kinases from the membrane during phagocytosis. The Journal Of General Physiology 2009, 135: i1-i1. DOI: 10.1085/jgp1351oia1.Peer-Reviewed Original ResearchMechanistic Insights into Membrane Remodeling Through BAR‐Domain Proteins
Frost A, Mim C, Perera R, Spasov K, Egelman E, De Camilli P, Unger V. Mechanistic Insights into Membrane Remodeling Through BAR‐Domain Proteins. The FASEB Journal 2009, 23: 82.2-82.2. DOI: 10.1096/fasebj.23.1_supplement.82.2.Peer-Reviewed Original ResearchF-BAR domainBAR domain proteinsMembrane-bound stateDifferent molecular surfacesMembrane remodelingCellular physiologyMembrane curvatureElectron cryomicroscopyMechanistic insightsCooperative assemblyConstituent membranesProteinStructural informationMolecular surfaceFunctional stateMembraneDomainSubtle changesCryomicroscopyBilayer substratePhysiologyStructural modelAssemblyRemodelingCells
2008
Molecular mechanisms in endocytosis at neuronal synapses
De Camilli P. Molecular mechanisms in endocytosis at neuronal synapses. The FASEB Journal 2008, 22: 250.3-250.3. DOI: 10.1096/fasebj.22.1_supplement.250.3.Peer-Reviewed Original ResearchFunction of dynaminNeuronal synapsesPowerful model systemRole of isoformsGTPase dynaminEndocytic proteinsEndocytic recyclingPlasma membraneMolecular mechanismsSecretory systemReconstitution experimentsEndocytosisSynaptic vesiclesHigh specializationDynaminLipid membranesRelease of neurotransmittersModel systemProteinMembraneFundamental mechanismsComplementary approachesRecent advancesDephosphorylationOrganelles
2001
PIP Kinase Iγ Is the Major PI(4,5)P2 Synthesizing Enzyme at the Synapse
Wenk M, Pellegrini L, Klenchin V, Di Paolo G, Chang S, Daniell L, Arioka M, Martin T, De Camilli P. PIP Kinase Iγ Is the Major PI(4,5)P2 Synthesizing Enzyme at the Synapse. Neuron 2001, 32: 79-88. PMID: 11604140, DOI: 10.1016/s0896-6273(01)00456-1.Peer-Reviewed Original ResearchConceptsSynaptojanin 1Clathrin-coated intermediatesPolyphosphoinositide phosphatase synaptojanin-1Coat recruitmentActin functionClathrin coatPositive regulatorEndocytic zonesPIPKIgammaSynthesizing enzymesRecruitmentIgammaSynapseDephosphorylationEndocytosisMajor brainElevated levelsRegulatorProteinActinEnzymeMembrane
1999
AP-2 Recruitment to Synaptotagmin Stimulated by Tyrosine-Based Endocytic Motifs
Haucke V, De Camilli P. AP-2 Recruitment to Synaptotagmin Stimulated by Tyrosine-Based Endocytic Motifs. Science 1999, 285: 1268-1271. PMID: 10455054, DOI: 10.1126/science.285.5431.1268.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Protein Complex alpha SubunitsAdaptor Proteins, Vesicular TransportAnimalsBinding SitesCalcium-Binding ProteinsCattleCell MembraneCHO CellsClathrinCoated Pits, Cell-MembraneCricetinaeEndocytosisMembrane GlycoproteinsMembrane ProteinsNerve Tissue ProteinsNeuronsOligopeptidesPhospholipase DProtein BindingRatsRecombinant Fusion ProteinsSynaptic MembranesSynaptotagminsTyrosineConceptsAP-2 recruitmentEndocytic motifAP-2Cargo proteinsPlasma membraneTyrosine-based endocytic motifClathrin adaptor protein AP-2Adaptor protein AP-2Nucleation of clathrinNon-neuronal cellsProtein synaptotagminDocking siteSynaptotagminClathrinMotifProteinRecruitmentMembraneEndocytosisTyrosineBindingCellsPeptides
1998
Generation of Coated Intermediates of Clathrin-Mediated Endocytosis on Protein-Free Liposomes
Takei K, Haucke V, Slepnev V, Farsad K, Salazar M, Chen H, De Camilli P. Generation of Coated Intermediates of Clathrin-Mediated Endocytosis on Protein-Free Liposomes. Cell 1998, 94: 131-141. PMID: 9674434, DOI: 10.1016/s0092-8674(00)81228-3.Peer-Reviewed Original Research
1994
Synaptic targeting of rabphilin-3A, a synaptic vesicle Ca2+/phospholipid-binding protein, depends on rab3A/3C
Li C, Takei K, Geppert M, Daniell L, Stenius K, Chapman E, Jahn R, De Camilli P, Südhof T. Synaptic targeting of rabphilin-3A, a synaptic vesicle Ca2+/phospholipid-binding protein, depends on rab3A/3C. Neuron 1994, 13: 885-898. PMID: 7946335, DOI: 10.1016/0896-6273(94)90254-2.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAmino Acid SequenceAnimalsBase SequenceBiological EvolutionBrain ChemistryConserved SequenceDNA, ComplementaryFluorescent Antibody TechniqueGlutathione TransferaseGTP-Binding ProteinsMiceMice, Mutant StrainsMicroscopy, ImmunoelectronMolecular Sequence DataNerve Tissue ProteinsNeuronsRab GTP-Binding ProteinsRab3 GTP-Binding ProteinsRatsRecombinant Fusion ProteinsVesicular Transport ProteinsConceptsGTP-dependent mannerSynaptic vesicle membraneRabphilin-3AVesicle membraneLow molecular weight GTPPeripheral membrane proteinsSynaptic vesiclesSynaptic vesicle dockingRab3A-deficient miceSynaptic vesicle proteinsMembrane recruitmentVesicle dockingPutative functionsMembrane proteinsWeight GTPVesicle proteinsN-terminusSynaptic targetingRab3CRab3AProteinVesiclesMembraneSynaptic patternsNormal levelsFormation of synaptic vesicles
Mundigl O, De Camilli P. Formation of synaptic vesicles. Current Opinion In Cell Biology 1994, 6: 561-567. PMID: 7986534, DOI: 10.1016/0955-0674(94)90077-9.Peer-Reviewed Original ResearchConceptsSynaptic vesiclesNew synaptic vesiclesSV membranesTransport vesiclesEvolutionary originNon-peptide neurotransmittersMembrane proteinsSecretory organellesFocal signalingVesiclesExocytosisMolecular compositionCellsGamma-aminobutyric acidOrganellesSignalingNerve cellsProteinDepolarization-induced Ca2PathwaySignificant progressNeurotransmittersMembraneAssemblyNerve terminals