2017
Quantitative PET Imaging in Drug Development: Estimation of Target Occupancy
Naganawa M, Gallezot JD, Rossano S, Carson RE. Quantitative PET Imaging in Drug Development: Estimation of Target Occupancy. Bulletin Of Mathematical Biology 2017, 81: 3508-3541. PMID: 29230702, DOI: 10.1007/s11538-017-0374-2.Peer-Reviewed Original Research
2016
First-in-Human Assessment of the Novel PDE2A PET Radiotracer 18F-PF-05270430
Naganawa M, Waterhouse RN, Nabulsi N, Lin SF, Labaree D, Ropchan J, Tarabar S, DeMartinis N, Ogden A, Banerjee A, Huang Y, Carson RE. First-in-Human Assessment of the Novel PDE2A PET Radiotracer 18F-PF-05270430. Journal Of Nuclear Medicine 2016, 57: 1388-1395. PMID: 27103022, PMCID: PMC5093918, DOI: 10.2967/jnumed.115.166850.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAzabicyclo CompoundsAzetidinesBrainComputer SimulationCyclic Nucleotide Phosphodiesterases, Type 2Feasibility StudiesFemaleHumansIsotope LabelingMacaca mulattaMaleMetabolic Clearance RateModels, BiologicalMolecular ImagingOrgan SpecificityPilot ProjectsPositron-Emission TomographyRadiopharmaceuticalsReproducibility of ResultsSensitivity and SpecificityTissue DistributionConceptsTest-retest variabilityHuman studiesPET ligandWhite matterNeocortical regionsMultilinear analysis 1MSv/MBqHealthy male subjectsDetectable pharmacologic effectsAppropriate tracer kinetic modelsTest-retest protocolAdverse eventsBrain uptakePharmacologic effectsRegional time-activity curvesTarget doseTime-activity curvesTracer uptakeMale subjectsWhole brainBrain regionsEffective doseCritical organsPET radiotracersNonhuman primates
2009
A new graphic plot analysis for determination of neuroreceptor binding in positron emission tomography studies
Ito H, Yokoi T, Ikoma Y, Shidahara M, Seki C, Naganawa M, Takahashi H, Takano H, Kimura Y, Ichise M, Suhara T. A new graphic plot analysis for determination of neuroreceptor binding in positron emission tomography studies. NeuroImage 2009, 49: 578-586. PMID: 19631754, DOI: 10.1016/j.neuroimage.2009.07.021.Peer-Reviewed Original Research
2008
PET kinetic analysis: error consideration of quantitative analysis in dynamic studies
Ikoma Y, Watabe H, Shidahara M, Naganawa M, Kimura Y. PET kinetic analysis: error consideration of quantitative analysis in dynamic studies. Annals Of Nuclear Medicine 2008, 22: 1-11. PMID: 18250982, DOI: 10.1007/s12149-007-0083-2.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus Statements
2007
Robust estimation of the arterial input function for Logan plots using an intersectional searching algorithm and clustering in positron emission tomography for neuroreceptor imaging
Naganawa M, Kimura Y, Yano J, Mishina M, Yanagisawa M, Ishii K, Oda K, Ishiwata K. Robust estimation of the arterial input function for Logan plots using an intersectional searching algorithm and clustering in positron emission tomography for neuroreceptor imaging. NeuroImage 2007, 40: 26-34. PMID: 18187345, DOI: 10.1016/j.neuroimage.2007.11.035.Peer-Reviewed Original ResearchPET kinetic analysis: wavelet denoising of dynamic PET data with application to parametric imaging
Shidahara M, Ikoma Y, Kershaw J, Kimura Y, Naganawa M, Watabe H. PET kinetic analysis: wavelet denoising of dynamic PET data with application to parametric imaging. Annals Of Nuclear Medicine 2007, 21: 379. PMID: 17876550, DOI: 10.1007/s12149-007-0044-9.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsAlgorithmsAnimalsArtifactsBrain MappingCluster AnalysisComputer SimulationCoronary CirculationFourier AnalysisHumansImage EnhancementImage Interpretation, Computer-AssistedImage Processing, Computer-AssistedKineticsNonlinear DynamicsNuclear MedicinePositron-Emission TomographyRadiopharmaceuticalsSoftwareTime Factors
2006
PET kinetic analysis—compartmental model
Watabe H, Ikoma Y, Kimura Y, Naganawa M, Shidahara M. PET kinetic analysis—compartmental model. Annals Of Nuclear Medicine 2006, 20: 583. PMID: 17294668, DOI: 10.1007/bf02984655.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus Statements
2005
MAP-based kinetic analysis for voxel-by-voxel compartment model estimation: Detailed imaging of the cerebral glucose metabolism using FDG
Kimura Y, Naganawa M, Yamaguchi J, Takabayashi Y, Uchiyama A, Oda K, Ishii K, Ishiwata K. MAP-based kinetic analysis for voxel-by-voxel compartment model estimation: Detailed imaging of the cerebral glucose metabolism using FDG. NeuroImage 2005, 29: 1203-1211. PMID: 16216532, DOI: 10.1016/j.neuroimage.2005.08.046.Peer-Reviewed Original ResearchAlgorithmsBlood GlucoseBrainBrain MappingComputer GraphicsComputer SimulationEnergy MetabolismFluorodeoxyglucose F18HumansImage Processing, Computer-AssistedImaging, Three-DimensionalKineticsLeast-Squares AnalysisNonlinear DynamicsPhantoms, ImagingPositron-Emission TomographyReproducibility of ResultsExtraction of a plasma time-activity curve from dynamic brain PET images based on independent component analysis
Naganawa M, Kimura Y, Ishii K, Oda K, Ishiwata K, Matani A. Extraction of a plasma time-activity curve from dynamic brain PET images based on independent component analysis. IEEE Transactions On Biomedical Engineering 2005, 52: 201-210. PMID: 15709657, DOI: 10.1109/tbme.2004.840193.Peer-Reviewed Original ResearchConceptsBrain PET imagesIndependent component analysisVolume imagesDynamic PET imagesPET imagesDynamic positron emission tomography (PET) dataAppropriate preprocessingBlood volume imagesImagesComponent analysisObjective functionPositron emission tomography dataComputer simulationsBrain FDG-PET studiesTomography dataPlasma time-activity curvePreprocessingNew methodEmission tomography dataSerial arterial blood samplingModelInput functionExtraction