2024
Cytosolic calcium regulates hepatic mitochondrial oxidation, intrahepatic lipolysis, and gluconeogenesis via CAMKII activation
LaMoia T, Hubbard B, Guerra M, Nasiri A, Sakuma I, Kahn M, Zhang D, Goodman R, Nathanson M, Sancak Y, Perelis M, Mootha V, Shulman G. Cytosolic calcium regulates hepatic mitochondrial oxidation, intrahepatic lipolysis, and gluconeogenesis via CAMKII activation. Cell Metabolism 2024, 36: 2329-2340.e4. PMID: 39153480, PMCID: PMC11446666, DOI: 10.1016/j.cmet.2024.07.016.Peer-Reviewed Original ResearchNeutrophils insert elastase into hepatocytes to regulate calcium signaling in alcohol-associated hepatitis
Ogino N, Leite M, Guerra M, Kruglov E, Asashima H, Hafler D, Ito T, Pereira J, Peiffer B, Sun Z, Ehrlich B, Nathanson M. Neutrophils insert elastase into hepatocytes to regulate calcium signaling in alcohol-associated hepatitis. Journal Of Clinical Investigation 2024, 134: e171691. PMID: 38916955, PMCID: PMC11324315, DOI: 10.1172/jci171691.Peer-Reviewed Original ResearchAlcohol-associated hepatitisReduced cell proliferationCalcium channel expressionCalcium signaling mechanismsIntracellular calcium channelsCell proliferationRegulate calcium signalingNeutrophil extracellular trapsChannel expressionNeutrophil granule proteinsCalcium channelsNeutrophil infiltrationPatient specimensGranule proteasesMouse modelHealthy subjectsLiver diseaseExtracellular trapsCalcium signalingSerpin E2NeutrophilsElastase activityHepatitisTissue remodelingSignaling mechanisms
2023
Serum autoantibodies against annexin A11 might weaken the biliary bicarbonate umbrella in IgG4-related cholangitis
Herta T, Kersten R, Chang J, Hubers L, Go S, Tolenaars D, Paulusma C, Nathanson M, Elferink R, van de Graaf S, Beuers U. Serum autoantibodies against annexin A11 might weaken the biliary bicarbonate umbrella in IgG4-related cholangitis. Zeitschrift Für Gastroenterologie 2023, 61: e448-e448. DOI: 10.1055/s-0043-1771806.Peer-Reviewed Original Research1558-P: The Mitochondrial Calcium Uniporter Regulates Hepatic Mitochondrial Oxidation and Intracellular Redox In Vivo
LAMOIA T, HUBBARD B, GUERRA M, GOODMAN R, NATHANSON M, SHULMAN G. 1558-P: The Mitochondrial Calcium Uniporter Regulates Hepatic Mitochondrial Oxidation and Intracellular Redox In Vivo. Diabetes 2023, 72 DOI: 10.2337/db23-1558-p.Peer-Reviewed Original ResearchNonalcoholic fatty liver diseaseHepatic mitochondrial oxidationMitochondrial calcium uniporterHepatocellular redox stateFatty liver diseaseEctopic lipid accumulationType 2 diabetesHepatic lipid contentNovel therapeutic targetMitochondrial oxidationHepatic triacylglycerol contentMitochondrial calcium influxMitochondrial redox ratioMitochondrial calciumKnockout mouse modelFortress BiotechMitochondrial fat oxidationNonalcoholic steatohepatitisLiver diseaseWT miceKO miceMetabolic dysfunctionCalcium uniporterCalcium influxMouse modelAbove the legal limit: Alcohol brings ER and mitochondria too close together
Guerra M, Nathanson M. Above the legal limit: Alcohol brings ER and mitochondria too close together. Cell Calcium 2023, 113: 102763. PMID: 37235972, PMCID: PMC10726477, DOI: 10.1016/j.ceca.2023.102763.Commentaries, Editorials and LettersMitochondrial DNA and the STING pathway are required for hepatic stellate cell activation
Arumugam S, Li B, Boodapati S, Nathanson M, Sun B, Ouyang X, Mehal W. Mitochondrial DNA and the STING pathway are required for hepatic stellate cell activation. Hepatology 2023, 78: 1448-1461. PMID: 37013923, PMCID: PMC10804318, DOI: 10.1097/hep.0000000000000388.Peer-Reviewed Original ResearchConceptsVoltage-dependent anion channelBioenergetic capacityMitochondrial DNATranscriptional upregulationCyclic GMP-AMP synthaseGMP-AMP synthaseTranscriptional regulationBioenergetic organellesFunctional mitochondriaMitochondrial membraneExternal mitochondrial membraneAnabolic pathwaysMitochondrial massAnion channelInterferon genesHSC transdifferentiationSubsequent activationCGAS-STINGTransdifferentiationIRF3 pathwayPathwaySTING pathwayGenesMitochondriaQuiescent HSCsMitochondrial calcium signaling in cholangiocarcinoma
Loyola-Machado A, Guerra M, Nathanson M. Mitochondrial calcium signaling in cholangiocarcinoma. Hepatoma Research 2023, 9: null-null. DOI: 10.20517/2394-5079.2023.28.Peer-Reviewed Original ResearchPrimary liver cancerNew pharmacological agentsPathogenesis of cholangiocarcinomaMitochondrial Ca2Liver cancerCholangiocarcinomaPharmacological agentsIntracellular Ca2Molecular alterationsDruggable targetsER-mitochondrial contact sitesCancer cellsKey regulatory moleculesMetabolic reprogramingReceptor familyMitochondrial healthMitochondrial calciumEnergy metabolismCell deathPathways of interestLatest findingsTreatmentCa2Regulatory moleculesContact sites
2020
Calcium Signaling in Cholangiocytes
Hernandez E, Nathanson M. Calcium Signaling in Cholangiocytes. 2020, 105-111. DOI: 10.1201/9780367813888-10.Peer-Reviewed Original ResearchCompartmental analysis of intestinal iron absorption and mucosal iron kinetics
McLaren G, Nathanson M, Saidel G. Compartmental analysis of intestinal iron absorption and mucosal iron kinetics. 2020, 187-204. DOI: 10.1201/9780367811716-20.Peer-Reviewed Original ResearchCa2+ Signaling in the Liver
Guerra M, Leite M, Nathanson M. Ca2+ Signaling in the Liver. 2020, 496-508. DOI: 10.1002/9781119436812.ch40.ChaptersBile duct epitheliumDuct epitheliumNon-alcoholic fatty liver diseaseBile acid-independent bile flowBile acid-dependent flowFatty liver diseaseLiver diseaseBile flowElectrolyte secretionLipid metabolismGrowth factorLiverCell populationsRat liverVariety of mechanismsEpitheliumCa2Recent studiesCell cycleHepatocytesLesser extentPathogenesisDiseaseNeurotransmittersHormone
2015
Signaling pathways in biliary epithelial cells
Leite M, Guerra M, Andrade V, Nathanson M. Signaling pathways in biliary epithelial cells. 2015, 15-33. DOI: 10.1002/9781118663387.ch2.Peer-Reviewed Original ResearchBiliary epithelial cellsEpithelial cellsFormation of bileSurface membrane receptorsBiliary treeDuctal bileIntracellular signal transduction pathwaysCanalicular bileGrowth factorCholangiocytesBileCell functionPeptide hormonesBile saltsDetoxification of xenobioticsMembrane receptorsSignal transduction pathwaysTransduction pathwaysNuclear Factor, Erythroid 2-Like 2 Regulates Expression of Type 3 Inositol 1,4,5-Trisphosphate Receptor and Calcium Signaling in Cholangiocytes
Weerachayaphorn J, Amaya MJ, Spirli C, Chansela P, Mitchell-Richards KA, Ananthanarayanan M, Nathanson MH. Nuclear Factor, Erythroid 2-Like 2 Regulates Expression of Type 3 Inositol 1,4,5-Trisphosphate Receptor and Calcium Signaling in Cholangiocytes. Gastroenterology 2015, 149: 211-222.e10. PMID: 25796361, PMCID: PMC4478166, DOI: 10.1053/j.gastro.2015.03.014.Peer-Reviewed Original ResearchConceptsBile ductBile duct unitsCholestatic disordersOxidative stressCalcium signalingNuclear factorMouse cholangiocytesDuct unitsReduced calcium signalingIntrahepatic bile ductsLevels of Nrf2Cholangiocyte cellsKnockdown of Nrf2Activation of Nrf2Intracellular calcium release channelsTranscription factor Nrf2Binding of Nrf2Calcium release channelPolymerase chain reaction analysisBiliary diseaseTrisphosphate receptorControl ratsLiver disordersBicarbonate secretionChain reaction analysisA multi‐journal partnership to highlight joint first‐authors of manuscripts
Omary MB, Wallace MB, El‐Omar E, Jalan R, Nathanson MH. A multi‐journal partnership to highlight joint first‐authors of manuscripts. Hepatology 2015, 61: 416-417. PMID: 25476851, DOI: 10.1002/hep.27631.Peer-Reviewed Original Research
2014
Apical Localization of Inositol 1,4,5-Trisphosphate Receptors Is Independent of Extended Synaptotagmins in Hepatocytes
Amaya MJ, Oliveira AG, Schroeder LK, Allgeyer ES, Bewersdorf J, Nathanson MH. Apical Localization of Inositol 1,4,5-Trisphosphate Receptors Is Independent of Extended Synaptotagmins in Hepatocytes. PLOS ONE 2014, 9: e114043. PMID: 25437447, PMCID: PMC4250053, DOI: 10.1371/journal.pone.0114043.Peer-Reviewed Original ResearchPost-translational Regulation of the Type III Inositol 1,4,5-Trisphosphate Receptor by miRNA-506*
Ananthanarayanan M, Banales JM, Guerra MT, Spirli C, Munoz-Garrido P, Mitchell-Richards K, Tafur D, Saez E, Nathanson MH. Post-translational Regulation of the Type III Inositol 1,4,5-Trisphosphate Receptor by miRNA-506*. Journal Of Biological Chemistry 2014, 290: 184-196. PMID: 25378392, PMCID: PMC4281721, DOI: 10.1074/jbc.m114.587030.Peer-Reviewed Original ResearchConceptsReporter activityMiR-506Trisphosphate receptorPost-translational regulationMiR-506 mimicsCell linesMiR-506 inhibitorEpigenetic regulationMiRNA regulationType III inositolFibrotic signatureMiR-506 expressionType III isoformCholangiocyte cell lineHEK293 cellsSitu hybridizationProtein levelsControl cellsInsP3R3H69 cellsRegulationSignalingExpressionCellsInositolEvaluation of Barrett Esophagus by Multiphoton Microscopy
Wong S, Nathanson M, Chen J, Jain D. Evaluation of Barrett Esophagus by Multiphoton Microscopy. Archives Of Pathology & Laboratory Medicine 2014, 138: 204-12. PMID: 24476518, PMCID: PMC4089503, DOI: 10.5858/arpa.2012-0675-oa.Peer-Reviewed Original ResearchMeSH KeywordsAdenine NucleotidesBarrett EsophagusBiopsyCardiaConnecticutEndoscopy, GastrointestinalEsophagogastric JunctionEsophagusGastric FundusGastric MucosaGoblet CellsHospitals, UniversityHumansLasersMaterials TestingMetaplasiaMicroscopy, Fluorescence, MultiphotonMucous MembranePoint-of-Care SystemsSpectroscopy, Near-InfraredConceptsDiagnosis of BEBarrett's esophagusGastroesophageal junctionGoblet cellsColumnar mucosaSquamous mucosaBiopsy specimensNormal esophageal squamous mucosaMPM imagingEndoscopy suiteIntestinal-type columnar epitheliumCardia-type mucosaRoutine upper endoscopyTissue blocksSurveillance of patientsRoutine histopathologic examinationNormal squamous mucosaType of mucosaEsophageal squamous mucosaFresh biopsy specimensMPM imagesSquamous epithelial cellsGastric fundic mucosaMultiphoton microscopyUpper endoscopy
2013
The insulin receptor translocates to the nucleus to regulate cell proliferation in liver
Amaya MJ, Oliveira AG, Guimarães ES, Casteluber MC, Carvalho SM, Andrade LM, Pinto MC, Mennone A, Oliveira CA, Resende RR, Menezes GB, Nathanson MH, Leite MF. The insulin receptor translocates to the nucleus to regulate cell proliferation in liver. Hepatology 2013, 59: 274-283. PMID: 23839970, PMCID: PMC3823683, DOI: 10.1002/hep.26609.Peer-Reviewed Original ResearchConceptsInsulin's metabolic effectsInsulin's mitogenic effectsInsulin receptorCell proliferationMitogenic effectMetabolic effectsInsulin-induced increaseFormation of inositolHepatic glucose metabolismInsulin's abilityFormation of InsP3Potential targetPathwayTherapeutic modulationGlucose metabolismProliferationInsP3Partial hepatectomyHepatic mitogenLiver growthLiver regenerationNucleusClathrinReceptorsLiver
2011
Something old, something new
Nathanson M. Something old, something new. Hepatology 2011, 55: 1-2. DOI: 10.1002/hep.24817.Peer-Reviewed Original ResearchLow pH Inhibits Gap Junction Communication in the Pancreatic Acinar Cell
Reed A, Husain S, Gorelick F, Nathanson M. Low pH Inhibits Gap Junction Communication in the Pancreatic Acinar Cell. Gastroenterology 2011, 140: s-385. DOI: 10.1016/s0016-5085(11)61577-1.Peer-Reviewed Original Research
2010
537 The Epidermal Growth Factor Receptor (EGFR) Reaches the Nucleus via a Caveolin-Dependent Pathway
Rodrigues M, Campos A, Goes A, Nathanson M, Gomes D. 537 The Epidermal Growth Factor Receptor (EGFR) Reaches the Nucleus via a Caveolin-Dependent Pathway. Gastroenterology 2010, 138: s-790. DOI: 10.1016/s0016-5085(10)63640-2.Peer-Reviewed Original Research