2014
Nonenzymatic domains of Kalirin7 contribute to spine morphogenesis through interactions with phosphoinositides and Abl
Ma XM, Miller MB, Vishwanatha KS, Gross MJ, Wang Y, Abbott T, Lam TT, Mains RE, Eipper BA. Nonenzymatic domains of Kalirin7 contribute to spine morphogenesis through interactions with phosphoinositides and Abl. Molecular Biology Of The Cell 2014, 25: 1458-1471. PMID: 24600045, PMCID: PMC4004595, DOI: 10.1091/mbc.e13-04-0215.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCalpainCells, CulturedDendritic SpinesGuanine Nucleotide Exchange FactorsHippocampusMice, KnockoutNeuronsOncogene Proteins v-ablPeptide FragmentsPhosphatidylinositolsPhosphorylationProtein Processing, Post-TranslationalProtein Structure, TertiaryProteolysisRats, Sprague-DawleySynapsesTransferrinConceptsGDP/GTP exchange factorSec14 domainSpectrin repeatsSpine morphogenesisNon-receptor tyrosine kinaseGTP exchange factorSpine formationNatural splice variantSpectrin repeat domainReceptor-mediated endocytosisRho GDP/GTP exchange factorDrosophila orthologueMembrane traffickingPhosphomimetic mutationExchange factorCalpain-mediated degradationRepeat domainTruncation mutantsTyrosine kinaseGenetic studiesCellular membranesSplice variantsRepeatsNonneuronal cellsMorphogenesis
2013
Six Innexins Contribute to Electrical Coupling of C. elegans Body-Wall Muscle
Liu P, Chen B, Altun Z, Gross M, Shan A, Schuman B, Hall D, Wang Z. Six Innexins Contribute to Electrical Coupling of C. elegans Body-Wall Muscle. PLOS ONE 2013, 8: e76877. PMID: 24130800, PMCID: PMC3793928, DOI: 10.1371/journal.pone.0076877.Peer-Reviewed Original ResearchConceptsUNC-9Body wall musclesC. elegans body wall muscleBody wall muscle cellsGap junctionsEpitope-tagged proteinsInnexinsTriple mutantPunctate localizationFunctions cellMutantsIntercellular junctionsDistinct populationsMuscle expressionGFPMuscle cellsJunctional currentsElectrical couplingFunctional propertiesCellsPromoterProteinSolid foundationExpressionPopulationAnr and Its Activation by PlcH Activity in Pseudomonas aeruginosa Host Colonization and Virulence
Jackson A, Gross M, Daniels E, Hampton T, Hammond J, Vallet-Gely I, Dove S, Stanton B, Hogan D. Anr and Its Activation by PlcH Activity in Pseudomonas aeruginosa Host Colonization and Virulence. Journal Of Bacteriology 2013, 195: 3093-3104. PMID: 23667230, PMCID: PMC3697539, DOI: 10.1128/jb.02169-12.Peer-Reviewed Original ResearchConceptsANR activityGlycine betainePlcH activityBiofilm formationHemolytic phospholipase CEnhanced biofilm formationGlucose-containing mediumP. aeruginosa PAO1Host colonizationLow oxygen tensionWild typeAbiotic surfacesMicroarray analysisAeruginosa PAO1Epithelial cell monolayersAbundant lipidsLines of evidenceAddition of cholinePhospholipase CCell membraneVirulenceBacterial metabolismProtein levelsMutantsRespiratory activity
2011
Hemolytic Phospholipase C Inhibition Protects Lung Function during Pseudomonas aeruginosa Infection
Wargo M, Gross M, Rajamani S, Allard J, Lundblad L, Allen G, Vasil M, Leclair L, Hogan D. Hemolytic Phospholipase C Inhibition Protects Lung Function during Pseudomonas aeruginosa Infection. American Journal Of Respiratory And Critical Care Medicine 2011, 184: 345-354. PMID: 21562128, PMCID: PMC3175536, DOI: 10.1164/rccm.201103-0374oc.Peer-Reviewed Original ResearchConceptsLung functionP. aeruginosa infectionAeruginosa infectionSignificant lung function impairmentLung function impairmentLung function declineBronchoalveolar lavage fluidPseudomonas aeruginosa infectionChronic lung infectionVirulence factorsP. aeruginosaP. aeruginosa virulence factorsPulmonary surfactant functionSingle virulence factorFunction declineMechanical ventilationFunction impairmentLavage fluidRespiratory endpointsSurfactant dysfunctionComputer-controlled ventilatorLung infectionAeruginosa virulence factorsStrain infectionLung physiology
2008
GbdR Regulates Pseudomonas aeruginosa plcH and pchP Transcription in Response to Choline Catabolites
Wargo M, Ho T, Gross M, Whittaker L, Hogan D. GbdR Regulates Pseudomonas aeruginosa plcH and pchP Transcription in Response to Choline Catabolites. Infection And Immunity 2008, 77: 1103-1111. PMID: 19103776, PMCID: PMC2643652, DOI: 10.1128/iai.01008-08.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAraC Transcription FactorBetaineCholineDNA Mutational AnalysisElectrophoretic Mobility Shift AssayGene Expression Regulation, BacterialMaleMiceMice, Inbred C57BLPhosphoric Monoester HydrolasesPhosphorylcholinePromoter Regions, GeneticPseudomonas aeruginosaPseudomonas InfectionsReverse Transcriptase Polymerase Chain ReactionSarcosineTranscription, GeneticTransferases (Other Substituted Phosphate Groups)ConceptsGlycine betainePlcH activityAraC family transcription factorElectrophoretic mobility shift assaysFamily transcription factorsEukaryotic cell membranesHemolytic phospholipase CMobility shift assaysP. aeruginosa virulenceProtein fusionsPromoter mappingTranscriptional activationTranscription factorsGbdRPhosphorylcholine phosphatasePromoter sequencesShift assaysGene expressionPromoter mutantsFeedback inductionMutantsTranscriptionPhospholipase CPrimary regulatorCell membrane