2019
19-OR: Controlled-Release Mitochondrial Protonophore (CRMP) Reverses Hypertriglyceridemia and Hepatic Steatosis in Dysmetabolic Nonhuman Primates
GOEDEKE L, ROMERAL V, BUTRICO G, KAHN M, DUFOUR S, ZHANG X, CLINE G, PETERSEN K, CHNG K, SHULMAN G. 19-OR: Controlled-Release Mitochondrial Protonophore (CRMP) Reverses Hypertriglyceridemia and Hepatic Steatosis in Dysmetabolic Nonhuman Primates. Diabetes 2019, 68 DOI: 10.2337/db19-19-or.Peer-Reviewed Original ResearchControlled-release mitochondrial protonophoreSpouse/partnerCRMP treatmentInsulin resistanceDiet-induced rodent modelJanssen ResearchReversal of hypertriglyceridemiaNAFLD/NASHInflammation/fibrosisNonhuman primate modelMitochondrial protonophoreEndogenous glucose productionHepatic insulin resistanceHepatic acetyl-CoA contentAdvisory PanelMitochondrial fat oxidationMetabolic syndromeFatty liverHepatic steatosisAdverse reactionsHepatic triglyceridesAcetyl-CoA contentPrimate modelNovo Nordisk A/S.Food intake
2013
Targeting Pyruvate Carboxylase Reduces Gluconeogenesis and Adiposity and Improves Insulin Resistance
Kumashiro N, Beddow SA, Vatner DF, Majumdar SK, Cantley JL, Guebre-Egziabher F, Fat I, Guigni B, Jurczak MJ, Birkenfeld AL, Kahn M, Perler BK, Puchowicz MA, Manchem VP, Bhanot S, Still CD, Gerhard GS, Petersen KF, Cline GW, Shulman GI, Samuel VT. Targeting Pyruvate Carboxylase Reduces Gluconeogenesis and Adiposity and Improves Insulin Resistance. Diabetes 2013, 62: 2183-2194. PMID: 23423574, PMCID: PMC3712050, DOI: 10.2337/db12-1311.Peer-Reviewed Original ResearchConceptsPyruvate carboxylaseAntisense oligonucleotideHepatocyte fatty acid oxidationInsulin resistanceNonalcoholic fatty liver diseaseZucker diabetic fatty ratsHigh fat-fed ratsFatty liver diseaseLiver biopsy specimensDiabetic fatty ratsPlasma lipid concentrationsType 2 diabetesHepatic insulin sensitivityHuman liver biopsy specimensEndogenous glucose productionHepatic insulin resistancePlasma glucose concentrationPotential therapeutic approachSpecific antisense oligonucleotideFat-fed ratsCarboxylaseFatty acid oxidationDe novo fatty acid synthesisLiver diseaseTissue-specific inhibition
2010
Knockdown of the gene encoding Drosophila tribbles homologue 3 (Trib3) improves insulin sensitivity through peroxisome proliferator-activated receptor-γ (PPAR-γ) activation in a rat model of insulin resistance
Weismann D, Erion DM, Ignatova-Todorava I, Nagai Y, Stark R, Hsiao JJ, Flannery C, Birkenfeld AL, May T, Kahn M, Zhang D, Yu XX, Murray SF, Bhanot S, Monia BP, Cline GW, Shulman GI, Samuel VT. Knockdown of the gene encoding Drosophila tribbles homologue 3 (Trib3) improves insulin sensitivity through peroxisome proliferator-activated receptor-γ (PPAR-γ) activation in a rat model of insulin resistance. Diabetologia 2010, 54: 935-944. PMID: 21190014, PMCID: PMC4061906, DOI: 10.1007/s00125-010-1984-5.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBenzhydryl CompoundsDiabetes Mellitus, Type 2Disease Models, AnimalEpoxy CompoundsGlucose Clamp TechniqueImmunoblottingInsulin ResistanceMaleOligonucleotides, AntisensePPAR gammaProtein KinasesProtein Serine-Threonine KinasesRatsRats, Sprague-DawleyReverse Transcriptase Polymerase Chain ReactionConceptsTribbles homologue 3Euglycaemic hyperinsulinaemic clampWhite adipose tissueInsulin sensitivityAdipose tissueAntisense oligonucleotideInsulin-stimulated whole-body glucose uptakeWhole-body glucose uptakeConclusions/interpretationThese dataTissue-specific insulin sensitivityGlucose uptakeSkeletal muscle glucose uptakeWhite adipose tissue massPlasma HDL cholesterolRole of PPARAdipose tissue massMuscle glucose uptakeEndogenous glucose productionExpression of PPARInsulin-sensitising effectsDependent mannerViral proto-oncogeneHDL cholesterolAkt2 activityInsulin resistance