2024
High burden of viruses and bacterial pathobionts drives heightened nasal innate immunity in children
Watkins T, Green A, Amat J, Cheemarla N, Hänsel K, Lozano R, Dudgeon S, Germain G, Landry M, Schulz W, Foxman E. High burden of viruses and bacterial pathobionts drives heightened nasal innate immunity in children. Journal Of Experimental Medicine 2024, 221: e20230911. PMID: 38949638, PMCID: PMC11215523, DOI: 10.1084/jem.20230911.Peer-Reviewed Original ResearchConceptsBacterial pathobiontsRespiratory virusesBurden of virusesSARS-CoV-2Innate immune activationSARS-CoV-2 viral loadDynamic host-pathogen interactionsInnate immune responseViral coinfectionCytokine profileViral loadNasal virusImmune activationProinflammatory responseIL-1BNasopharyngeal samplesHost-pathogen interactionsImmune responseInterferon responsePathobiontsInnate immunityPaired samplesCXCL10Healthy 1-year-oldVirus
2023
Progressive shingles in a toddler due to reactivation of Varicella Zoster vaccine virus four days after infection with SARS-CoV-2; a case report
Miller C, Taylor-Salmon E, Emuren L, Landry M, Gershon A, Miller G. Progressive shingles in a toddler due to reactivation of Varicella Zoster vaccine virus four days after infection with SARS-CoV-2; a case report. BMC Infectious Diseases 2023, 23: 854. PMID: 38057696, PMCID: PMC10698951, DOI: 10.1186/s12879-023-08809-5.Peer-Reviewed Original ResearchConceptsVaricella-zoster virusVZV reactivationVaccine-strain varicella-zoster virusSevere acute respiratory syndrome coronavirus 2Acute respiratory syndrome coronavirus 2Latent varicella zoster virusSymptomatic COVID-19 infectionRespiratory syndrome coronavirus 2SARS-CoV2 infectionSyndrome coronavirus 2COVID-19 infectionVaccine-type strainsSARS-CoV-2Vesicular rashPediatric patientsSignificant morbidityClinical syndromeCoronavirus 2Single doseCase reportGeneral populationMechanical traumaDisease processHZ casesPhysiologic stressEnhanced inhibition of MHC-I expression by SARS-CoV-2 Omicron subvariants
Moriyama M, Lucas C, Monteiro V, Initiative Y, Iwasaki A, Chen N, Breban M, Hahn A, Pham K, Koch T, Chaguza C, Tikhonova I, Castaldi C, Mane S, De Kumar B, Ferguson D, Kerantzas N, Peaper D, Landry M, Schulz W, Vogels C, Grubaugh N. Enhanced inhibition of MHC-I expression by SARS-CoV-2 Omicron subvariants. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2221652120. PMID: 37036977, PMCID: PMC10120007, DOI: 10.1073/pnas.2221652120.Peer-Reviewed Original ResearchConceptsMHC-I expressionBreakthrough infectionsSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variantsMajor histocompatibility complex class I expressionCell-mediated immunityInfluenza virus infectionSARS-CoV-2 VOCsMHC-I upregulationClass I expressionSARS-CoV-2T cell recognitionVirus infectionMHC II expressionSpike proteinEnhanced inhibitionInfectionCell recognitionCommon mutationsReinfectionE proteinAntibodiesViral genesSubvariantsExpressionNasal host response-based screening for undiagnosed respiratory viruses: a pathogen surveillance and detection study
Cheemarla N, Hanron A, Fauver J, Bishai J, Watkins T, Brito A, Zhao D, Alpert T, Vogels C, Ko A, Schulz W, Landry M, Grubaugh N, van Dijk D, Foxman E. Nasal host response-based screening for undiagnosed respiratory viruses: a pathogen surveillance and detection study. The Lancet Microbe 2023, 4: e38-e46. PMID: 36586415, PMCID: PMC9835789, DOI: 10.1016/s2666-5247(22)00296-8.Peer-Reviewed Original ResearchConceptsRespiratory virus panelPg/mLCXCL10 concentrationsSARS-CoV-2Bacterial pathobiontsRespiratory virusesSARS-CoV-2 negative samplesViral respiratory infectionsSARS-CoV-2 positive samplesClinical virology laboratoryHealth care systemVirus-positive samplesQuantitative RT-PCRInfluenza C virusSymptomatic patientsRespiratory infectionsSeasonal coronavirusesNasopharyngeal swabsVirus panelC virusCommon virusesCXCL10Host responseInterferon responseVirology laboratory
2022
Rapid emergence of SARS-CoV-2 Omicron variant is associated with an infection advantage over Delta in vaccinated persons
Chaguza C, Coppi A, Earnest R, Ferguson D, Kerantzas N, Warner F, Young HP, Breban MI, Billig K, Koch RT, Pham K, Kalinich CC, Ott IM, Fauver JR, Hahn AM, Tikhonova IR, Castaldi C, De Kumar B, Pettker CM, Warren JL, Weinberger DM, Landry ML, Peaper DR, Schulz W, Vogels CBF, Grubaugh ND. Rapid emergence of SARS-CoV-2 Omicron variant is associated with an infection advantage over Delta in vaccinated persons. Med 2022, 3: 325-334.e4. PMID: 35399324, PMCID: PMC8983481, DOI: 10.1016/j.medj.2022.03.010.Peer-Reviewed Original ResearchConceptsSpike gene target failureSARS-CoV-2 Omicron variantPositivity rateOmicron variantOmicron infectionVaccine dosesVaccine-induced immunityNumber of dosesTest positivity rateOdds of infectionSARS-CoV-2Significant reductionDominant Delta variantUnvaccinated personsVaccination statusHigher oddsDelta variantInfectionVaccine manufacturersDisease controlVirus copiesDosesPCR testOddsTarget failure
2021
A stem-loop RNA RIG-I agonist protects against acute and chronic SARS-CoV-2 infection in mice
Mao T, Israelow B, Lucas C, Vogels CBF, Gomez-Calvo ML, Fedorova O, Breban MI, Menasche BL, Dong H, Linehan M, Alpert T, Anderson F, Earnest R, Fauver J, Kalinich C, Munyenyembe K, Ott I, Petrone M, Rothman J, Watkins A, Wilen C, Landry M, Grubaugh N, Pyle A, Iwasaki A. A stem-loop RNA RIG-I agonist protects against acute and chronic SARS-CoV-2 infection in mice. Journal Of Experimental Medicine 2021, 219: e20211818. PMID: 34757384, PMCID: PMC8590200, DOI: 10.1084/jem.20211818.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 infectionChronic SARS-CoV-2 infectionVariants of concernLethal SARS-CoV-2 infectionPost-infection therapyLower respiratory tractPost-exposure treatmentType I interferonSARS-CoV-2Effective medical countermeasuresAdaptive immune systemBroad-spectrum antiviralsContext of infectionSingle doseRespiratory tractViral controlImmunodeficient miceSevere diseaseMouse modelI interferonViral infectionImmune systemInnate immunityDisease preventionConsiderable efficacyDynamic innate immune response determines susceptibility to SARS-CoV-2 infection and early replication kinetics
Cheemarla NR, Watkins TA, Mihaylova VT, Wang B, Zhao D, Wang G, Landry ML, Foxman EF. Dynamic innate immune response determines susceptibility to SARS-CoV-2 infection and early replication kinetics. Journal Of Experimental Medicine 2021, 218: e20210583. PMID: 34128960, PMCID: PMC8210587, DOI: 10.1084/jem.20210583.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAged, 80 and overAngiotensin-Converting Enzyme 2Case-Control StudiesChemokine CXCL10COVID-19Disease SusceptibilityFemaleGene Expression ProfilingHost-Pathogen InteractionsHumansImmunity, InnateInterferonsMaleMiddle AgedNasopharynxPicornaviridae InfectionsSARS-CoV-2Viral LoadVirus ReplicationConceptsSARS-CoV-2 infectionSARS-CoV-2 exposureSARS-CoV-2Interferon-stimulated genesUpper respiratory tractRespiratory tractEarly SARS-CoV-2 infectionDynamic innate immune responseViral replicationSARS-CoV-2 replicationPatient nasopharyngeal samplesInnate immune responseLow infectious doseViral loadNasopharyngeal samplesImmune responseInfectious doseISG responseAntiviral responseInfection progressionViral transmissionLevel correlatesInfectionISG inductionInitial replicationMultiplex qPCR discriminates variants of concern to enhance global surveillance of SARS-CoV-2
Vogels CBF, Breban MI, Ott IM, Alpert T, Petrone ME, Watkins AE, Kalinich CC, Earnest R, Rothman JE, de Jesus J, Claro I, Ferreira G, Crispim MAE, Network B, Singh L, Tegally H, Anyaneji UJ, Africa N, Hodcroft EB, Mason CE, Khullar G, Metti J, Dudley JT, MacKay MJ, Nash M, Wang J, Liu C, Hui P, Murphy S, Neal C, Laszlo E, Landry ML, Muyombwe A, Downing R, Razeq J, de Oliveira T, Faria NR, Sabino EC, Neher RA, Fauver JR, Grubaugh ND. Multiplex qPCR discriminates variants of concern to enhance global surveillance of SARS-CoV-2. PLOS Biology 2021, 19: e3001236. PMID: 33961632, PMCID: PMC8133773, DOI: 10.1371/journal.pbio.3001236.Peer-Reviewed Original Research
2020
Diagnosis of SARS-CoV-2 infection in the setting of the cytokine release syndrome
Azar MM, Shin JJ, Kang I, Landry M. Diagnosis of SARS-CoV-2 infection in the setting of the cytokine release syndrome. Expert Review Of Molecular Diagnostics 2020, 20: 1087-1097. PMID: 32990479, DOI: 10.1080/14737159.2020.1830760.Peer-Reviewed Original ResearchConceptsSARS-CoV-2Immune profileCOVID-19SARS-CoV-2 infectionCytokine release syndromeAdaptive immune cellsMultiple inflammatory cytokinesSARS-CoV-2 RNAFalse-negative resultsRelease syndromeInfectious complicationsIL-10Laboratory markersD-dimerInflammatory moleculesIP-10IL-6Inflammatory cytokinesMCP-1Acute diagnosisIL-2Immune cellsClinical severityTherapeutic benefitPathogenic contributionAnalytical sensitivity and efficiency comparisons of SARS-CoV-2 RT–qPCR primer–probe sets
Vogels CBF, Brito AF, Wyllie AL, Fauver JR, Ott IM, Kalinich CC, Petrone ME, Casanovas-Massana A, Catherine Muenker M, Moore AJ, Klein J, Lu P, Lu-Culligan A, Jiang X, Kim DJ, Kudo E, Mao T, Moriyama M, Oh JE, Park A, Silva J, Song E, Takahashi T, Taura M, Tokuyama M, Venkataraman A, Weizman OE, Wong P, Yang Y, Cheemarla NR, White EB, Lapidus S, Earnest R, Geng B, Vijayakumar P, Odio C, Fournier J, Bermejo S, Farhadian S, Dela Cruz CS, Iwasaki A, Ko AI, Landry ML, Foxman EF, Grubaugh ND. Analytical sensitivity and efficiency comparisons of SARS-CoV-2 RT–qPCR primer–probe sets. Nature Microbiology 2020, 5: 1299-1305. PMID: 32651556, PMCID: PMC9241364, DOI: 10.1038/s41564-020-0761-6.Peer-Reviewed Original ResearchConceptsSARS-CoV-2SARS-CoV-2 RTSevere acute respiratory syndrome coronavirusAcute respiratory syndrome coronavirusViral RNA copiesPublic health laboratoriesPublic health interventionsReverse transcription-PCR assaySARS-CoV-2 diagnostic testingDiagnostic assaysTranscription-PCR assaySARS-CoV-2 evolutionQuantitative reverse transcription-PCR assaysRapid diagnostic assaysHealth laboratoriesHealth interventionsDiagnostic testingRNA copiesPrimer-probe setsAssaysLow sensitivityCritical needAnalytical sensitivityCoast-to-Coast Spread of SARS-CoV-2 during the Early Epidemic in the United States
Fauver JR, Petrone ME, Hodcroft EB, Shioda K, Ehrlich HY, Watts AG, Vogels CBF, Brito AF, Alpert T, Muyombwe A, Razeq J, Downing R, Cheemarla NR, Wyllie AL, Kalinich CC, Ott IM, Quick J, Loman NJ, Neugebauer KM, Greninger AL, Jerome KR, Roychoudhury P, Xie H, Shrestha L, Huang ML, Pitzer VE, Iwasaki A, Omer SB, Khan K, Bogoch II, Martinello RA, Foxman EF, Landry ML, Neher RA, Ko AI, Grubaugh ND. Coast-to-Coast Spread of SARS-CoV-2 during the Early Epidemic in the United States. Cell 2020, 181: 990-996.e5. PMID: 32386545, PMCID: PMC7204677, DOI: 10.1016/j.cell.2020.04.021.Peer-Reviewed Original ResearchConceptsSARS-CoV-2Federal travel restrictionsSARS-CoV-2 transmissionCOVID-19 patientsCoronavirus SARS-CoV-2SARS-CoV-2 introductionsEarly SARS-CoV-2 transmissionPattern of spreadSustained transmissionLocal surveillanceEarly epidemicInternational importationCOVID-19 outbreakUnited StatesViral genomeInternational travel patternsPatientsCritical needTravel restrictions