2024
Glucagon promotes increased hepatic mitochondrial oxidation and pyruvate carboxylase flux in humans with fatty liver disease
Petersen K, Dufour S, Mehal W, Shulman G. Glucagon promotes increased hepatic mitochondrial oxidation and pyruvate carboxylase flux in humans with fatty liver disease. Cell Metabolism 2024, 36: 2359-2366.e3. PMID: 39197461, PMCID: PMC11612994, DOI: 10.1016/j.cmet.2024.07.023.Peer-Reviewed Original ResearchSmall molecule inhibition of glycogen synthase I reduces muscle glycogen content and improves biomarkers in a mouse model of Pompe disease
Gaspar R, Sakuma I, Nasiri A, Hubbard B, LaMoia T, Leitner B, Tep S, Xi Y, Green E, Ullman J, Petersen K, Shulman G. Small molecule inhibition of glycogen synthase I reduces muscle glycogen content and improves biomarkers in a mouse model of Pompe disease. AJP Endocrinology And Metabolism 2024, 327: e524-e532. PMID: 39171753, PMCID: PMC11482269, DOI: 10.1152/ajpendo.00175.2024.Peer-Reviewed Original ResearchGAA-KO miceMouse model of Pompe diseaseModel of Pompe diseasePompe diseaseMetabolic dysregulationRegular chowMouse modelSmall molecule inhibitionInsulin sensitivityReduced spontaneous activityGroups of male miceEnzyme acid alpha-glucosidaseProgressive muscle weaknessImprove metabolic dysregulationSynthase IWhole-body insulin sensitivityAcid alpha-glucosidaseImproved glucose toleranceIncreased AMPK phosphorylationWT miceAbnormal accumulation of glycogenGlycogen storage disorderMale miceSpontaneous activityImproved biomarkers1571-P: CIDEB and CGI-58 Regulate Liver Lipid Droplet Size with Cholesterol Content, Linking to Inflammation and Fibrosis in Metabolic Dysfunction–Associated Steatohepatitis
SAKUMA I, GASPAR R, NASIRI A, KAHN M, ZHENG J, GUERRA M, YIMLAMAI D, MURRAY S, PERELIS M, BARNES W, VATNER D, PETERSEN K, SAMUEL V, SHULMAN G. 1571-P: CIDEB and CGI-58 Regulate Liver Lipid Droplet Size with Cholesterol Content, Linking to Inflammation and Fibrosis in Metabolic Dysfunction–Associated Steatohepatitis. Diabetes 2024, 73 DOI: 10.2337/db24-1571-p.Peer-Reviewed Original ResearchLipid droplet sizeCGI-58Choline-deficient l-amino acid-defined high-fat dietGlycerol-3-phosphate acyltransferaseAntisense oligonucleotidesComparative gene identification-58Glycerol-3-phosphateLoss of function mutationsLipid droplet morphologyExpression of CGI-58Liver inflammationCidebCholesterol contentFunction mutationsL-amino acid-defined high-fat dietComplications of type 2 diabetesMolecular mechanismsDevelopment of liver inflammationMacrophage crown-like structuresType 2 diabetesHigh-fat dietCrown-like structuresASO treatmentGPAMKnockdown292-OR: Coenzyme A Synthase Knockdown Alleviates Metabolic Dysfunction–Associated Steatohepatitis via Decreasing Cholesterol in Liver Lipid Droplets
SAKUMA I, GASPAR R, NASIRI A, KAHN M, GUERRA M, YIMLAMAI D, MURRAY S, PERELIS M, BARNES W, VATNER D, PETERSEN K, SAMUEL V, SHULMAN G. 292-OR: Coenzyme A Synthase Knockdown Alleviates Metabolic Dysfunction–Associated Steatohepatitis via Decreasing Cholesterol in Liver Lipid Droplets. Diabetes 2024, 73 DOI: 10.2337/db24-292-or.Peer-Reviewed Original ResearchCholine-deficient l-amino acid-defined high-fat dietAccumulation of cholesterolMRNA expressionPlasma ALTL-amino acid-defined high-fat dietProtective effectLiver lipid dropletsType 2 diabetesPotential therapeutic approachHigh-fat dietDecreased plasma ALTFibrosis markersFree cholesterol accumulationLipid dropletsLiver inflammationDay 1Macrophage markersHepatic inflammationMouse modelMarker expressionTherapeutic approachesDay 2Day 3Day 7Fibrosis1577-P: CIDEB Knockdown Promotes Increased Hepatic Mitochondrial Fat Oxidation and Reverses Hepatic Steatosis and Hepatic Insulin Resistance by the PKCε-Insulin Receptor Kinase Pathway
ZHENG J, NASIRI A, GASPAR R, HUBBARD B, SAKUMA I, MA X, MURRAY S, PERELIS M, BARNES W, SAMUEL V, PETERSEN K, SHULMAN G. 1577-P: CIDEB Knockdown Promotes Increased Hepatic Mitochondrial Fat Oxidation and Reverses Hepatic Steatosis and Hepatic Insulin Resistance by the PKCε-Insulin Receptor Kinase Pathway. Diabetes 2024, 73 DOI: 10.2337/db24-1577-p.Peer-Reviewed Original ResearchReceptor kinase pathwaysMitochondrial fat oxidationHepatic insulin resistanceKinase pathwayExpression of cidebAmeliorated HFD-induced hepatic steatosisHFD-induced hepatic steatosisHFD-induced insulin resistanceSteatotic liver diseasePathogenesis of type 2 diabetesHepatic steatosisCidebHyperinsulinemic-euglycemic clamp studiesHepatic triglyceride accumulationInsulin resistanceReverse hepatic steatosisTriglyceride accumulationHepatic insulin sensitivityInsulin sensitivityPathwayHepatic expressionHigh-fatWhole-body insulin sensitivityLiver diseaseTranslocationInsulin Resistance in Type 2 Diabetes
Roden M, Petersen K, Shulman G. Insulin Resistance in Type 2 Diabetes. 2024, 238-249. DOI: 10.1002/9781119697473.ch17.Peer-Reviewed Original Research
2023
Lysophosphatidic acid triggers inflammation in the liver and white adipose tissue in rat models of 1-acyl-sn-glycerol-3-phosphate acyltransferase 2 deficiency and overnutrition
Sakuma I, Gaspar R, Luukkonen P, Kahn M, Zhang D, Zhang X, Murray S, Golla J, Vatner D, Samuel V, Petersen K, Shulman G. Lysophosphatidic acid triggers inflammation in the liver and white adipose tissue in rat models of 1-acyl-sn-glycerol-3-phosphate acyltransferase 2 deficiency and overnutrition. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2312666120. PMID: 38127985, PMCID: PMC10756285, DOI: 10.1073/pnas.2312666120.Peer-Reviewed Original ResearchEffect of Burosumab on Muscle Function and Strength, and Rates of ATP Synthesis in Skeletal Muscle in Adults With XLH
Insogna K, Sullivan R, Parziale S, Deng Y, Carrano D, Simpson C, Dufour S, Carpenter T, Petersen K. Effect of Burosumab on Muscle Function and Strength, and Rates of ATP Synthesis in Skeletal Muscle in Adults With XLH. The Journal Of Clinical Endocrinology & Metabolism 2023, 109: e1061-e1071. PMID: 37930769, DOI: 10.1210/clinem/dgad642.Peer-Reviewed Original ResearchSymptoms of painMuscle function testsFunction testsMuscle strengthMuscle functionSkeletal muscleLower extremity joint painSTS testMuscle function studiesImproved muscle functionTreatment-naïve adultsSynthesis rateMonths of studyJoint painThird doseSymptomatic adultsClinical trialsRight calfATP synthesis rateBurosumabPainMuscle concentrationsXLHSymptomsMuscleThe PNPLA3 I148M variant increases ketogenesis and decreases hepatic de novo lipogenesis and mitochondrial function in humans
Luukkonen P, Porthan K, Ahlholm N, Rosqvist F, Dufour S, Zhang X, Lehtimäki T, Seppänen W, Orho-Melander M, Hodson L, Petersen K, Shulman G, Yki-Järvinen H. The PNPLA3 I148M variant increases ketogenesis and decreases hepatic de novo lipogenesis and mitochondrial function in humans. Cell Metabolism 2023, 35: 1887-1896.e5. PMID: 37909034, DOI: 10.1016/j.cmet.2023.10.008.Peer-Reviewed Original ResearchConceptsDe novo lipogenesisHepatic de novo lipogenesisPlasma β-hydroxybutyrate concentrationsΒ-hydroxybutyrate concentrationsLiver diseaseNovo lipogenesisPNPLA3 I148M variantHepatic mitochondrial redox stateMajor genetic risk factorI148M variantFatty liver diseaseGenetic risk factorsHepatic mitochondrial dysfunctionKetogenic dietMixed mealRisk factorsHepatic metabolismHomozygous carriersM carriersMitochondrial dysfunctionCitrate synthase fluxM variantKetogenesisMitochondrial redox stateMitochondrial function1569-P: Lysophosphatidic Acid Mediates Inflammation in Liver and White Adipose Tissue in a Rat Model of 1-acyl-sn-glycerol-3-phosphate Acyltransferase 2 Deficiency
SAKUMA I, GASPAR R, LUUKKONEN P, KAHN M, MURRAY S, SAMUEL V, PETERSEN K, SHULMAN G. 1569-P: Lysophosphatidic Acid Mediates Inflammation in Liver and White Adipose Tissue in a Rat Model of 1-acyl-sn-glycerol-3-phosphate Acyltransferase 2 Deficiency. Diabetes 2023, 72 DOI: 10.2337/db23-1569-p.Peer-Reviewed Original ResearchWhite adipose tissueControlled-release mitochondrial protonophoreCongenital generalized lipodystrophyAGPAT2 deficiencyHepatic inflammationASO treatmentAdipose tissueLysophosphatidic acidAdult male SD ratsAntisense oligonucleotideMale SD ratsNovel therapeutic targetNovo NordiskCRMP treatmentFortress BiotechWAT inflammationDohme Corp.SD ratsRat modelAGPAT2 geneGeneralized lipodystrophyInflammationTherapeutic targetIonis PharmaceuticalsDeficient animals222-OR: Metformin Reduces Fasting Glycemia in Well-Controlled Type 2 Diabetes by Promoting Aerobic Glycolysis Independent of Decreasing Endogenous Glucose Production
SARABHAI T, LAMOIA T, FRIESL S, JONUSCHEIT M, PETERSEN K, SHULMAN G, RODEN M. 222-OR: Metformin Reduces Fasting Glycemia in Well-Controlled Type 2 Diabetes by Promoting Aerobic Glycolysis Independent of Decreasing Endogenous Glucose Production. Diabetes 2023, 72 DOI: 10.2337/db23-222-or.Peer-Reviewed Original ResearchEndogenous glucose productionRates of EGPType 2 diabetesHepatic ATP contentMetformin treatmentGlucose clearanceNovo NordiskGlucose productionGlycogen contentGlucose-lowering effectHepatic TAG contentLactate productionBlood glucose levelsPlasma glucose concentrationPeripheral glucose clearanceHepatic glycogen contentATP contentAdvisory PanelFortress BiotechMetformin-induced inhibitionGlycemic controlDohme Corp.Hepatic triglyceridesMitochondrial electron transport chain activityGlucose levelsInhibition of HSD17B13 protects against liver fibrosis by inhibition of pyrimidine catabolism in nonalcoholic steatohepatitis
Luukkonen P, Sakuma I, Gaspar R, Mooring M, Nasiri A, Kahn M, Zhang X, Zhang D, Sammalkorpi H, Penttilä A, Orho-Melander M, Arola J, Juuti A, Zhang X, Yimlamai D, Yki-Järvinen H, Petersen K, Shulman G. Inhibition of HSD17B13 protects against liver fibrosis by inhibition of pyrimidine catabolism in nonalcoholic steatohepatitis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2217543120. PMID: 36669104, PMCID: PMC9942818, DOI: 10.1073/pnas.2217543120.Peer-Reviewed Original ResearchConceptsNonalcoholic fatty liver diseaseLiver fibrosisLiver diseaseCommon chronic liver diseaseChronic liver diseaseFatty liver diseaseRisk of fibrosisDistinct mouse modelsPyrimidine catabolismNonalcoholic steatohepatitisMouse modelTherapeutic targetFibrosisDihydropyrimidine dehydrogenaseHuman liverA variantCommon variantsMetabolomics approachDiseaseMiceInhibitionCatabolismKnockdownSteatohepatitisGimeracil
2022
Distinct subcellular localisation of intramyocellular lipids and reduced PKCε/PKCθ activity preserve muscle insulin sensitivity in exercise-trained mice
Gaspar R, Lyu K, Hubbard B, Leitner B, Luukkonen P, Hirabara S, Sakuma I, Nasiri A, Zhang D, Kahn M, Cline G, Pauli J, Perry R, Petersen K, Shulman G. Distinct subcellular localisation of intramyocellular lipids and reduced PKCε/PKCθ activity preserve muscle insulin sensitivity in exercise-trained mice. Diabetologia 2022, 66: 567-578. PMID: 36456864, PMCID: PMC11194860, DOI: 10.1007/s00125-022-05838-8.Peer-Reviewed Original ResearchConceptsProtein kinase CsSubcellular compartmentsDistinct subcellular localisationMuscle insulin sensitivityMultiple subcellular compartmentsInsulin receptor kinaseNovel protein kinase CsActivation of PKCεSubcellular localisationPKCθ translocationReceptor kinasePlasma membraneSubcellular distributionTriacylglycerol contentCrucial pathwaysIntramuscular triacylglycerol contentRC miceDiacylglycerolConclusions/interpretationThese resultsPKCεPM compartmentPhosphorylationMuscle triacylglycerol contentSkeletal muscleRecent findingsSAT052 The PNPLA3 I148M variant increases intrahepatic lipolysis and beta oxidation and decreases de novo lipogenesis and hepatic mitochondrial function in humans
Luukkonen P, Porthan K, Ahlholm N, Rosqvist F, Dufour S, Zhang X, Dabek J, Lehtimäki T, Seppänen W, Orho-Melander M, Hodson L, Petersen K, Shulman G, Yki-Järvinen H. SAT052 The PNPLA3 I148M variant increases intrahepatic lipolysis and beta oxidation and decreases de novo lipogenesis and hepatic mitochondrial function in humans. Journal Of Hepatology 2022, 77: s690-s691. DOI: 10.1016/s0168-8278(22)01698-1.Peer-Reviewed Original ResearchSAT104 The effect of glucagon on rates of hepatic mitochondrial oxidation and pyruvate carboxylase flux in man assessed by positional isotopomer tracer analysis (PINTA)
Petersen K, Shulman G. SAT104 The effect of glucagon on rates of hepatic mitochondrial oxidation and pyruvate carboxylase flux in man assessed by positional isotopomer tracer analysis (PINTA). Journal Of Hepatology 2022, 77: s714-s715. DOI: 10.1016/s0168-8278(22)01746-9.Peer-Reviewed Original Research
2021
282-OR: The Effect of Glucagon on Rates of Hepatic Mitochondrial Oxidation and Pyruvate Carboxylase Flux in Man Assessed by Positional Isotopomer NMR Tracer Analysis (PINTA)
PETERSEN K, SHULMAN G. 282-OR: The Effect of Glucagon on Rates of Hepatic Mitochondrial Oxidation and Pyruvate Carboxylase Flux in Man Assessed by Positional Isotopomer NMR Tracer Analysis (PINTA). Diabetes 2021, 70 DOI: 10.2337/db21-282-or.Peer-Reviewed Original ResearchHepatic mitochondrial oxidationPhysiological increaseSpouse/partnerDual agonistsGilead SciencesJanssen ResearchTreatment of T2DPlasma glucagon concentrationsNovo NordiskMitochondrial oxidationEffect of glucagonPyruvate carboxylase fluxMitochondrial fat oxidationAnorexic effectGlucagon concentrationsHepatic steatosisClinical trialsC-peptideGLP-1Food intakeHealthy volunteersFat oxidationIonis PharmaceuticalsGlucagonGlucose production
2020
AS018 Carbohydrate restriction reverses NAFLD by altering hepatic mitochondrial fluxes in humans
Luukkonen P, Dufour S, Lyu K, Zhang X, Hakkarainen A, Lehtimäki T, Cline G, Petersen K, Shulman G, Yki-Järvinen H. AS018 Carbohydrate restriction reverses NAFLD by altering hepatic mitochondrial fluxes in humans. Journal Of Hepatology 2020, 73: s14. DOI: 10.1016/s0168-8278(20)30588-2.Peer-Reviewed Original Research220-LB: Glucagon Promotes Hepatic Autophagy by AMPK-Mediated mTORC1 Inhibition
GALSGAARD K, WEWER ALBRECHTSEN N, HOLST J, SHULMAN G, PETERSEN K, NASIRI A, CLINE G, ZHANG X, LEE J, HUBBARD B. 220-LB: Glucagon Promotes Hepatic Autophagy by AMPK-Mediated mTORC1 Inhibition. Diabetes 2020, 69 DOI: 10.2337/db20-220-lb.Peer-Reviewed Original ResearchSpouse/partnerDohme Corp.Hepatic autophagyMerck SharpKidney diseaseNovo Nordisk A/SAMP kinaseGlucagon treatmentPlasma glucagon concentrationsAdvisory PanelKrebs-Henseleit bicarbonate bufferHepatic protein metabolismNational InstituteNovo Nordisk FoundationMarkers of autophagyHepatic glucose metabolismFasted male ratsProtein/amino acid metabolismGlucagon's roleGlucagon concentrationsGlucagon infusionMale ratsAwake miceNovo Nordisk A/S.Glucose metabolismNon‐alcoholic Fatty Liver Disease and Insulin Resistance
Petersen M, Samuel V, Petersen K, Shulman G. Non‐alcoholic Fatty Liver Disease and Insulin Resistance. 2020, 455-471. DOI: 10.1002/9781119436812.ch37.Peer-Reviewed Original ResearchNon-alcoholic fatty liver diseaseHepatic insulin resistanceFatty liver diseaseInsulin resistanceLiver diseaseDevelopment of NAFLDLipid-induced muscle insulin resistanceRandle glucose-fatty acid cycleCommon chronic liver diseaseType 2 diabetes mellitusHyperinsulinemic-euglycemic clamp studiesGlucose-fatty acid cycleLiver-related deathSkeletal muscleChronic liver diseaseNon-alcoholic steatohepatitisMajor risk factorLipid-induced hepatic insulin resistanceMuscle insulin resistanceDiabetes mellitusRisk factorsClamp studiesLipoprotein lipaseDiseaseProtein kinase C
2019
Anti‐inflammatory effects of oestrogen mediate the sexual dimorphic response to lipid‐induced insulin resistance
Camporez JP, Lyu K, Goldberg EL, Zhang D, Cline GW, Jurczak MJ, Dixit VD, Petersen KF, Shulman GI. Anti‐inflammatory effects of oestrogen mediate the sexual dimorphic response to lipid‐induced insulin resistance. The Journal Of Physiology 2019, 597: 3885-3903. PMID: 31206703, PMCID: PMC6876753, DOI: 10.1113/jp277270.Peer-Reviewed Original ResearchConceptsObesity-induced insulin resistanceHigh-fat dietEctopic lipid contentWhite adipose tissue lipolysisInsulin resistanceAdipose tissue lipolysisMale miceInsulin sensitivityFemale miceInsulin-stimulated suppressionWAT inflammationTissue lipolysisRodent studiesTumor necrosis factor αWhole-body insulin sensitivityLipid-induced insulin resistanceMetabolic homeostasisAge-matched menInterleukin-6 concentrationsSkeletal muscleAnti-inflammatory effectsType 2 diabetesInsulin-mediated suppressionSexual dimorphic responseNecrosis factor α