Keiichiro Tanaka, PhD
Associate Research ScientistCards
About
Research
Publications
2025
Direct Activity Measurement of Heterotrimeric Gi Proteins and Gq Protein By Effector Pulldown
Tanaka K, Schwartz M. Direct Activity Measurement of Heterotrimeric Gi Proteins and Gq Protein By Effector Pulldown. Bio-protocol 2025, 15: e5406. PMID: 40799476, PMCID: PMC12336858, DOI: 10.21769/bioprotoc.5406.Peer-Reviewed Original ResearchBait proteinG protein-coupled receptorsActivation of heterotrimeric G proteinsSecond messengersG-proteinWild-type proteinHeterotrimeric G proteinsAmino acid substitutionsHeterotrimeric Gi proteinsDiverse physiological processesCell lysis bufferGPCR activationG protein-coupled receptor activationBait constructActivation of G proteinsGA activityGA isoformsTag sequencesAcid substitutionsProtein insertionHomologous isoformsPulldown methodGA proteinsLysis bufferSignaling crosstalkFocal adhesion-derived liquid-liquid phase separations regulate mRNA translation
Kumar A, Tanaka K, Schwartz M. Focal adhesion-derived liquid-liquid phase separations regulate mRNA translation. ELife 2025, 13: rp96157. PMID: 40568958, PMCID: PMC12201949, DOI: 10.7554/elife.96157.Peer-Reviewed Original ResearchConceptsFocal adhesionsLiquid-liquid phase separationMRNA translationFocal adhesion protein p130CasIntegrin-mediated focal adhesionsFocal adhesion proteinsRNA-binding proteinsMessage translationAdhesion dynamicsP130CasAdhesion proteinsBinding proteinRegulatory mechanismsConcentrations of fibronectinCell behaviorPlate cellsSenescent cellsMRNAPhoto-inductionProteinCytoplasmCellsQuiescent stateMultiple componentsTranslationFocal adhesion-derived liquid-liquid phase separations regulate mRNA translation
Kumar A, Tanaka K, Schwartz M. Focal adhesion-derived liquid-liquid phase separations regulate mRNA translation. ELife 2025, 13 DOI: 10.7554/elife.96157.2.Peer-Reviewed Original ResearchFocal adhesionsLiquid-liquid phase separationMRNA translationFocal adhesion protein p130CasIntegrin-mediated focal adhesionsFocal adhesion proteinsRNA-binding proteinsMessage translationAdhesion dynamicsP130CasAdhesion proteinsBinding proteinRegulatory mechanismsConcentrations of fibronectinCell behaviorPlate cellsSenescent cellsMRNAPhoto-inductionProteinCytoplasmCellsQuiescent stateMultiple componentsTranslation
2024
Cellular stiffness sensing through talin 1 in tissue mechanical homeostasis
Chanduri M, Kumar A, Weiss D, Emuna N, Barsukov I, Shi M, Tanaka K, Wang X, Datye A, Kanyo J, Collin F, Lam T, Schwarz U, Bai S, Nottoli T, Goult B, Humphrey J, Schwartz M. Cellular stiffness sensing through talin 1 in tissue mechanical homeostasis. Science Advances 2024, 10: eadi6286. PMID: 39167642, PMCID: PMC11338229, DOI: 10.1126/sciadv.adi6286.Peer-Reviewed Original ResearchConceptsTissue mechanical homeostasisStiffness sensingExtracellular matrixTalin-1Mechanical homeostasisExtracellular matrix mechanicsIncreased cell spreadingCell spreadingTalinMutationsCellular sensingFibrillar collagenReduced axial stiffnessTissue mechanical propertiesMechanical propertiesAxial stiffnessCompliant substratesHomeostasisRupture pressureArp2/3ARPC5LStiffnessHomeostasis hypothesisResident cellsTissue stiffnessLatrophilin-2 mediates fluid shear stress mechanotransduction at endothelial junctions
Tanaka K, Chen M, Prendergast A, Zhuang Z, Nasiri A, Joshi D, Hintzen J, Chung M, Kumar A, Mani A, Koleske A, Crawford J, Nicoli S, Schwartz M. Latrophilin-2 mediates fluid shear stress mechanotransduction at endothelial junctions. The EMBO Journal 2024, 43: 3175-3191. PMID: 38886581, PMCID: PMC11294477, DOI: 10.1038/s44318-024-00142-0.Peer-Reviewed Original ResearchLatrophilin-2Affinity purification methodCell-cell junctionsHuman genetic dataPECAM-1SiRNA screenGenetic dataEndothelial cell response to fluid shear stressGA proteinsDownstream eventsEndothelial-specific knockoutG-proteinActivity assayShear stress mechanotransductionPlexin-D1Endothelial signalingJunctional complexesPurification methodVE-cadherinResponse to fluid shear stressVascular developmentGA residuesEndothelial junctionsGPCRsVEGF receptors
2023
FN (Fibronectin)-Integrin α5 Signaling Promotes Thoracic Aortic Aneurysm in a Mouse Model of Marfan Syndrome
Chen M, Cavinato C, Hansen J, Tanaka K, Ren P, Hassab A, Li D, Youshao E, Tellides G, Iyengar R, Humphrey J, Schwartz M. FN (Fibronectin)-Integrin α5 Signaling Promotes Thoracic Aortic Aneurysm in a Mouse Model of Marfan Syndrome. Arteriosclerosis Thrombosis And Vascular Biology 2023, 43: e132-e150. PMID: 36994727, PMCID: PMC10133209, DOI: 10.1161/atvbaha.123.319120.Peer-Reviewed Original ResearchConceptsContractile gene expressionSmooth muscle cellsGene expressionMgR miceWild-type smooth muscle cellsMarfan miceAortic aneurysmMouse modelMarfan syndromeMouse aortic smooth muscle cellsPathogenesis of TAACytoplasmic domainVascular smooth muscle cellsThoracic aortic aneurysmAortic smooth muscle cellsCultured smooth muscle cellsNF-kB activationNF-kB inhibitionMolecular mechanismsIntegrin α2ECM remodelingElastic fiber integrityPhenotypic modulationMarfan's aneurysmsMgR/
2016
Syndecan 4 controls lymphatic vasculature remodeling during mouse embryonic development
Wang Y, Baeyens N, Corti F, Tanaka K, Fang J, Zhang J, Jin Y, Coon B, Hirschi K, Schwartz M, Simons M. Syndecan 4 controls lymphatic vasculature remodeling during mouse embryonic development. Journal Of Cell Science 2016, 129: e1.1-e1.1. DOI: 10.1242/jcs.200089.Peer-Reviewed Original ResearchCorrection: Talin tension sensor reveals novel features of focal adhesion force transmission and mechanosensitivity
Kumar A, Ouyang M, Van den Dries K, McGhee EJ, Tanaka K, Anderson MD, Groisman A, Goult BT, Anderson KI, Schwartz MA. Correction: Talin tension sensor reveals novel features of focal adhesion force transmission and mechanosensitivity. Journal Of Cell Biology 2016, 214: 231-231. PMID: 27432899, PMCID: PMC4949446, DOI: 10.1083/jcb.20151001207062016c.Peer-Reviewed Original Research
2014
Yeast Osmosensors Hkr1 and Msb2 Activate the Hog1 MAPK Cascade by Different Mechanisms
Tanaka K, Tatebayashi K, Nishimura A, Yamamoto K, Yang H, Saito H. Yeast Osmosensors Hkr1 and Msb2 Activate the Hog1 MAPK Cascade by Different Mechanisms. Science Signaling 2014, 7: ra21. PMID: 24570489, DOI: 10.1126/scisignal.2004780.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingCytoskeletonIntracellular Signaling Peptides and ProteinsMAP Kinase Kinase KinasesMAP Kinase Signaling SystemMembrane ProteinsMitogen-Activated Protein KinasesOsmotic PressureProtein BindingProtein Serine-Threonine KinasesProtein Structure, TertiarySaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsConceptsActivation of Hog1Hog1 MAPK cascadeActin cytoskeletonMAPK cascadeCytoplasmic domainMitogen-activated protein kinase Hog1Activation of Ste11Protein kinase Hog1Scaffold protein Bem1Yeast Saccharomyces cerevisiaeOsmoadaptive responsePXXP motifSH3 domainMsb2Saccharomyces cerevisiaeHKR1Osmotic stressSte20Hog1Bem1Sho1Signaling mechanismHigh osmolarityDifferential regulationCytoskeleton
2013
Integrins in mechanotransduction
Ross TD, Coon BG, Yun S, Baeyens N, Tanaka K, Ouyang M, Schwartz MA. Integrins in mechanotransduction. Current Opinion In Cell Biology 2013, 25: 613-618. PMID: 23797029, PMCID: PMC3757118, DOI: 10.1016/j.ceb.2013.05.006.Peer-Reviewed Original ResearchConceptsMolecular mechanismsIntegrin-mediated adhesionImportant regulatory eventActin cytoskeletonRegulatory eventsExtracellular matrixNormal physiologyCell functionMajor insightsCentral roleCellsRecent advancesCytoskeletonEffect of forceMechanotransductionAdhesionIntegrinsPathwayPhysiologyMechanismRecent work