2003
Identification of the primary caspase 3 cleavage site in alpha II-spectrin during apoptosis
Williams S, Smith A, Cianci C, Morrow J, Brown T. Identification of the primary caspase 3 cleavage site in alpha II-spectrin during apoptosis. Apoptosis 2003, 8: 353-361. PMID: 12815278, DOI: 10.1023/a:1024168901003.Peer-Reviewed Original ResearchConceptsCaspase-3 cleavage siteCleavage sitePrimary cleavage siteII-spectrinCytoskeletal integrityAlpha II spectrinMembrane stabilityCaspase-3Cleavage of alphaApoptotic cell deathCaspase-3 activationMature B cellsConsensus sitesDeletion analysisTranscriptional inhibitorMajor proteinsLikely altersApoptotic bodiesCell deathProteinStructural conformationActinomycin DSpectrinNew insightsApoptosis
2002
The Spectrin-Ankyrin Skeleton Controls CD45 Surface Display and Interleukin-2 Production
Pradhan D, Morrow J. The Spectrin-Ankyrin Skeleton Controls CD45 Surface Display and Interleukin-2 Production. Immunity 2002, 17: 303-315. PMID: 12354383, DOI: 10.1016/s1074-7613(02)00396-5.Peer-Reviewed Original ResearchMeSH KeywordsAnkyrinsCD3 ComplexCell MembraneHumansInterleukin-2Jurkat CellsLeukocyte Common AntigensLymphocyte ActivationMacromolecular SubstancesMembrane GlycoproteinsNeoplasm ProteinsPeptide FragmentsProtein BindingProtein Interaction MappingProtein IsoformsProtein Structure, TertiaryRecombinant Fusion ProteinsSpectrinStructure-Activity RelationshipT-LymphocytesTransfectionConceptsJurkat T cellsT cell receptor stimulationCell receptor stimulationCytoplasmic domainSurface recruitmentBetaI spectrinSpectrin peptidesT cell activationSurface displayIntracellular poolUnexpected contributionAnkyrinSpectrinCell activationReceptor stimulationCD45T cellsCellsInterleukin-2 productionGlycoproteinRecruitmentT lymphocyte functionActivationLymphocyte functionPool
2001
Dynamic molecular modeling of pathogenic mutations in the spectrin self-association domain
Zhang Z, Weed S, Gallagher P, Morrow J. Dynamic molecular modeling of pathogenic mutations in the spectrin self-association domain. Blood 2001, 98: 1645-1653. PMID: 11535493, DOI: 10.1182/blood.v98.6.1645.Peer-Reviewed Original ResearchConceptsSelf-association domainPoint mutationsHuman sequenceDrosophila alpha-spectrinDynamic molecular modelingHuman erythrocyte spectrinCytoskeletal functionSpecific point mutationsConservative substitutionsPrimary sequenceConformational rearrangementsAlpha-spectrinHelical regionHydrophilic residuesAmino acidsMutationsSpectrinSalt bridgeErythrocyte spectrinStructural consequencesPathogenic mutationsRepeat unitsMolecular modelingSequenceStructural disruptionβIII Spectrin Binds to the Arp1 Subunit of Dynactin*
Holleran E, Ligon L, Tokito M, Stankewich M, Morrow J, Holzbaur E. βIII Spectrin Binds to the Arp1 Subunit of Dynactin*. Journal Of Biological Chemistry 2001, 276: 36598-36605. PMID: 11461920, DOI: 10.1074/jbc.m104838200.Peer-Reviewed Original ResearchMeSH KeywordsActinsAnimalsBinding SitesBrainCell MembraneCOS CellsCytoplasmCytosolDynactin ComplexElectrophoresis, Polyacrylamide GelGlutathione TransferaseImmunoblottingImmunohistochemistryMicrofilament ProteinsMicrotubule-Associated ProteinsPrecipitin TestsProtein BindingProtein IsoformsProtein Structure, TertiaryRatsSpectrinSrc Homology DomainsTwo-Hybrid System TechniquesConceptsBetaIII spectrinGolgi vesicle traffickingMicrotubule motor complexAssociation of dyneinVesicle traffickingVesicular cargoRat brain cytosolMitotic spindleIntracellular motorsCytoplasmic dyneinCleavage furrowDynactinInterphase cellsArp1Spectrin isoformsCytoplasmic vesiclesF-actinActin bindsEndoplasmic reticulumPerinuclear regionNovel localizationSpectrinDyneinBrain cytosolΒIII spectrin[42] ADP-ribosylation factor (ARF) as regulator of spectrin assembly at Golgi complex
De Matteis M, Morrow J. [42] ADP-ribosylation factor (ARF) as regulator of spectrin assembly at Golgi complex. Methods In Enzymology 2001, 329: 405-416. PMID: 11210560, DOI: 10.1016/s0076-6879(01)29101-0.Peer-Reviewed Original ResearchMeSH KeywordsADP-Ribosylation FactorsAnimalsCell LineCell Membrane PermeabilityCoat Protein Complex IDNA PrimersElectrophoresis, Polyacrylamide GelEscherichia coliFluorescent Antibody TechniqueGenetic VectorsGolgi ApparatusIntracellular MembranesPeptide FragmentsProtein BindingRecombinant Fusion ProteinsSpectrinConceptsADP-ribosylation factorGolgi membranesSpectrin peptidesPermeabilized cultured cellsBinding of spectrinCultured cell linesDifferent functional domainsSpectrin assemblySequence motifsRibosylation factorIndirect immunofluorescent microscopyFunctional domainsIntracellular distributionCultured cellsSpectrinΒIII spectrinImmunofluorescence analysisCell linesGolgiImmunofluorescent microscopyExperimental strategiesPeptidesMembraneCellsOrganellesCaspase Remodeling of the Spectrin Membrane Skeleton during Lens Development and Aging*
Lee A, Morrow J, Fowler V. Caspase Remodeling of the Spectrin Membrane Skeleton during Lens Development and Aging*. Journal Of Biological Chemistry 2001, 276: 20735-20742. PMID: 11278555, DOI: 10.1074/jbc.m009723200.Peer-Reviewed Original ResearchConceptsLens fiber cellsFiber cellsMembrane blebbingMembrane skeletonLens developmentAlpha-spectrinSpectrin membrane skeletonMembrane skeleton componentsChick lens developmentCell-cell fusionApoptotic cellsOldest fiber cellsMembrane associationClassical apoptosisApoptotic processSpecific proteolysisTerminal differentiationAdult lensSpectrin fragmentsMembrane interdigitationsBlebbingCytoskeletal protein alpha-spectrinPermanent remodelingSkeleton componentsSpectrinDynactin-Dependent, Dynein-Driven Vesicle Transport in the Absence of Membrane Proteins A Role for Spectrin and Acidic Phospholipids
Muresan V, Stankewich M, Steffen W, Morrow J, Holzbaur E, Schnapp B. Dynactin-Dependent, Dynein-Driven Vesicle Transport in the Absence of Membrane Proteins A Role for Spectrin and Acidic Phospholipids. Molecular Cell 2001, 7: 173-183. PMID: 11172722, DOI: 10.1016/s1097-2765(01)00165-4.Peer-Reviewed Original ResearchConceptsVesicle transportAcidic phospholipidsAxonal vesiclesProtein-free liposomesAbsence of membranesPH domainDependent motilityCytosolic factorsDynactinSpectrinEssential roleSpectrin polypeptidesVesiclesMembranePhospholipidsAxonal transportMotilitySoluble componentsContext of liposomesDyneinCytosolPolypeptideTransportRoleRetrograde axonal transport
2000
α-Catenin Binds Directly to Spectrin and Facilitates Spectrin-Membrane Assembly in Vivo *
Pradhan D, Lombardo C, Roe S, Rimm D, Morrow J. α-Catenin Binds Directly to Spectrin and Facilitates Spectrin-Membrane Assembly in Vivo *. Journal Of Biological Chemistry 2000, 276: 4175-4181. PMID: 11069925, DOI: 10.1074/jbc.m009259200.Peer-Reviewed Original ResearchConceptsInteraction of spectrinClone A cellsΑ-catenin bindsAmino-terminal domainAmino acid regionSpectrin-actin skeletonCell-cell contactCell adhesion processesMadin-Darby canine kidneyAdhesion complexesConfluent Madin Darby canine kidneyCytoskeletal assemblyPlasma membraneDetergent solubilityMembrane assemblyAcid regionSpectrin skeletonMembrane regionsA cellsVivo roleSpectrinPhospholipid interactionsBiological membranesE-cadherinMolecular interactionsSpectrin tethers and mesh in the biosynthetic pathway.
De Matteis M, Morrow J. Spectrin tethers and mesh in the biosynthetic pathway. Journal Of Cell Science 2000, 113 ( Pt 13): 2331-43. PMID: 10852813, DOI: 10.1242/jcs.113.13.2331.Peer-Reviewed Original ResearchConceptsSecretory pathwayMembrane proteinsSmall GTPase ArfEarly secretory pathwayDynamics of organellesGolgi dynamicsProtein traffickingOrganelle functionGolgi structurePhosphoinositide levelsGolgi membranesBiosynthetic pathwayMacromolecular complexesCytosolic proteinsAdapter moleculeSpectrin skeletonIntracellular transportOrganellesSpectrinDirect interactionProteinKey playersRecent discoveryGolgiSimilar role
1998
The role of ankyrin and spectrin in membrane transport and domain formation
De Matteis M, Morrow J. The role of ankyrin and spectrin in membrane transport and domain formation. Current Opinion In Cell Biology 1998, 10: 542-549. PMID: 9719877, DOI: 10.1016/s0955-0674(98)80071-9.Peer-Reviewed Original ResearchConceptsAnterograde protein traffickingRole of ankyrinADP-ribosylation factorGolgi integrityProtein traffickingSpecific functional domainsSpectrin functionSecretory pathwayMotor proteinsFunctional domainsGolgi complexMembrane transportNovel insightsSpectrinRecent discoveryDomain formationAnkyrinTraffickingProteinPathwayFunctionComplexesDiscoveryDomainIdentificationADP ribosylation factor regulates spectrin binding to the Golgi complex
Godi A, Santone I, Pertile P, Devarajan P, Stabach P, Morrow J, Di Tullio G, Polishchuk R, Petrucci T, Luini A, De Matteis M. ADP ribosylation factor regulates spectrin binding to the Golgi complex. Proceedings Of The National Academy Of Sciences Of The United States Of America 1998, 95: 8607-8612. PMID: 9671725, PMCID: PMC21123, DOI: 10.1073/pnas.95.15.8607.Peer-Reviewed Original ResearchConceptsADP-ribosylation factorGolgi complexRibosylation factorG proteinsVesicular stomatitis virus G proteinPleckstrin homology domainSmall G proteinsPH domain interactionBinding of spectrinVirus G proteinGolgi spectrinHomology domainPH domainCoat proteinDocking siteDomain interactionsGolgiEndoplasmic reticulumPtdInsP2 levelsDomain IPhospholipase DSpectrinGolgi fractionsProteinPtdInsP2
1997
Of Membrane Stability and Mosaics: The Spectrin Cytoskeleton
Morrow J, Rimm D, Kennedy S, Cianci C, Sinard J, Weed S. Of Membrane Stability and Mosaics: The Spectrin Cytoskeleton. 1997, 485-540. DOI: 10.1002/cphy.cp140111.Peer-Reviewed Original ResearchNon-erythroid cellsMembrane skeletonRed cell membrane skeletonSpectrin membrane skeletonCell membrane skeletonErythrocyte membrane skeletonMembrane organizersProtein 4.1Spectrin cytoskeletonAdhesion proteinsCytoskeletal elementsSpectrin skeletonMembrane stabilityMosaic modelSpectrinProteinCellsDematinDynaminStomatinPallidinCytoskeletonAnkyrinAdducinTropomodulinSite-Directed Mutagenesis of αII Spectrin at Codon 1175 Modulates Its μ-Calpain Susceptibility †
Stabach P, Cianci C, Glantz S, Zhang Z, Morrow J. Site-Directed Mutagenesis of αII Spectrin at Codon 1175 Modulates Its μ-Calpain Susceptibility †. Biochemistry 1997, 36: 57-65. PMID: 8993318, DOI: 10.1021/bi962034i.Peer-Reviewed Original ResearchConceptsSite-directed mutagenesisAlpha II spectrinCalpain cleavage sitesCleavage siteII-spectrinHelix CRecombinant GST-fusion proteinsBona fide proteinGST fusion proteinTriple-helical motifsStrict substrate specificityFamily of Ca2Protein kinase CDynamic molecular modelingStructural repeatsProminent substrateDifferent amino acidsSubstrate specificityIntracellular proteolysisPenultimate residueCysteine proteasesKinase CMost proteasesSteroid receptor activationSpectrin
1996
Chapter 6 The Spectrin Cytoskeleton and Organization of Polarized Epithelial Cell Membranes
Devarajan P, Morrow J. Chapter 6 The Spectrin Cytoskeleton and Organization of Polarized Epithelial Cell Membranes. Current Topics In Membranes 1996, 43: 97-128. DOI: 10.1016/s0070-2161(08)60386-x.Peer-Reviewed Original ResearchIntegral membrane proteinsPeripheral plasma membraneCultured epithelial cellsEpithelial cellsAnti-spectrin antibodiesEukaryotic cellsNonerythroid cellsMembrane proteinsSpectrin cytoskeletonEpithelial cell membranesPlasma membraneExperimental removalCell shapeDifferent isoformsMembrane stabilitySpectrinCell membraneCytoskeletonPostsynaptic densityPostsynaptic membraneMembrane instabilityCerebellar granule cellsSkeletal muscleMembraneCells
1991
Ankyrin binds to the 15th repetitive unit of erythroid and nonerythroid beta-spectrin.
Kennedy S, Warren S, Forget B, Morrow J. Ankyrin binds to the 15th repetitive unit of erythroid and nonerythroid beta-spectrin. Journal Of Cell Biology 1991, 115: 267-277. PMID: 1833409, PMCID: PMC2289929, DOI: 10.1083/jcb.115.1.267.Peer-Reviewed Original ResearchConceptsAmino-terminal halfRepeat unitsCarboxy-terminal halfCOOH-terminal thirdProkaryotic expression systemNonerythroid cellsIntegral proteinsErythrocyte membrane vesiclesBeta spectrinResidue segmentExpression systemAnkyrinNuclease digestionNonhomologous segmentsMembrane vesiclesTerminal thirdAttachment of spectrinNative spectrinSpectrinAmino acidsPosition 45RepeatsSedimentation velocity experimentsRepetitive unitsCDNAChapter 14 Polarized Assembly of Spectrin and Ankyrin in Epithelial Cells
Morrow J, Cianci C, Kennedy S, Warren S. Chapter 14 Polarized Assembly of Spectrin and Ankyrin in Epithelial Cells. Current Topics In Membranes 1991, 38: 227-244. DOI: 10.1016/s0070-2161(08)60791-1.Peer-Reviewed Original ResearchSpectrin skeletonAmino terminusRed cell skeletonPost-translational controlBind F-actinSpectrin-actin cytoskeletonInteraction of spectrinRole of proteinsProtein 4.9Protein 4.1Signal transductionSpectrin cytoskeletonAccessory proteinsPlasma membranePolarized assemblySubunit interactionsF-actinΒ-subunitAnkyrinCell skeletonMembrane transportSpectrin-ankyrin interactionSpectrinAntiparallel heterodimerCytoskeleton
1989
Functional diversity among spectrin isoforms
Coleman T, Fishkind D, Mooseker M, Morrow J. Functional diversity among spectrin isoforms. Cytoskeleton 1989, 12: 225-247. PMID: 2655937, DOI: 10.1002/cm.970120405.Peer-Reviewed Original ResearchConceptsSpectrin isoformsBeta subunitMembrane skeletal proteinsFunctional diversityUbiquitous familySubcellular localizationMembrane linkageCommon alpha subunitSkeletal proteinsAlpha subunitNonerythroid spectrinStructural comparisonCell typesMajor functional differencesSpectrinFunctional differencesSubunitsIsoformsFunctional propertiesSummary of studiesProteinDiversityObserved differencesOwn laboratoryLinkage
1988
Phosphorylation of ankyrin down‐regulates its cooperative interaction with spectrin and protein 3
Cianci C, Giorgi M, Morrow J. Phosphorylation of ankyrin down‐regulates its cooperative interaction with spectrin and protein 3. Journal Of Cellular Biochemistry 1988, 37: 301-315. PMID: 2970468, DOI: 10.1002/jcb.240370305.Peer-Reviewed Original ResearchConceptsCytoplasmic domainAffinity of ankyrinProtein 3Integral membrane proteinsSpectrin tetramersCooperative interactionsSpectrin oligomersMembrane kinaseSpectrin dimersLong-range cooperative interactionsNonerythroid cellsProtein phosphorylationMembrane proteinsPeripheral cytoskeletonBeta spectrinAnkyrinPhosphorylationOligomer formationChymotryptic digestionSpectrinPrimary attachmentGeneral importanceCooperative fashionEnhanced affinitySuch interactionsComparison of nonerythroid alpha-spectrin genes reveals strict homology among diverse species.
Leto T, Fortugno-Erikson D, Barton D, Yang-Feng T, Francke U, Harris A, Morrow J, Marchesi V, Benz E. Comparison of nonerythroid alpha-spectrin genes reveals strict homology among diverse species. Molecular And Cellular Biology 1988, 8: 1-9. PMID: 3336352, PMCID: PMC363070, DOI: 10.1128/mcb.8.1.1.Peer-Reviewed Original ResearchConceptsAlpha-spectrin geneErythroid alpha-spectrin geneHuman chromosome 9Alpha-spectrin chainComparison of sequencesCarboxy-terminal sequenceErythroid genesDiverse speciesExpression libraryChromosome 1Hydrophobic residuesErythroid spectrinAlpha-spectrinFilamentous proteinsFunctional sitesGenesChromosome 9Human cloneStrict homologyRepeat patternCell membraneInvariant tryptophanSpectrinPeptide sequencesCDNAComparison of Nonerythroid α-Spectrin Genes Reveals Strict Homology among Diverse Species
Leto T, Fortugno-Erikson D, Barton D, Yang-Feng T, Francke U, Harris A, Morrow J, Marchesi V, Benz E. Comparison of Nonerythroid α-Spectrin Genes Reveals Strict Homology among Diverse Species. Molecular And Cellular Biology 1988, 8: 1-9. DOI: 10.1128/mcb.8.1.1-9.1988.Peer-Reviewed Original ResearchΑ-spectrin geneHuman chromosome 9Comparison of sequencesCarboxy-terminal sequenceErythroid genesDiverse speciesSpectrin geneExpression libraryChromosome 1Hydrophobic residuesErythroid spectrinFilamentous proteinsFunctional sitesGenesChromosome 9Human cloneStrict homologyΑ-spectrinRepeat patternCell membraneInvariant tryptophanSpectrinPeptide sequencesCDNASpecies