2021
Generation of parametric Ki images for FDG PET using two 5‐min scans
Wu J, Liu H, Ye Q, Gallezot J, Naganawa M, Miao T, Lu Y, Chen M, Esserman DA, Kyriakides TC, Carson RE, Liu C. Generation of parametric Ki images for FDG PET using two 5‐min scans. Medical Physics 2021, 48: 5219-5231. PMID: 34287939, DOI: 10.1002/mp.15113.Peer-Reviewed Original ResearchMeSH KeywordsAlgorithmsFluorodeoxyglucose F18HumansPositron-Emission TomographyRadiopharmaceuticalsWhole Body ImagingConceptsPopulation-based input functionDynamic FDG-PET scansFDG-PET scansFDG-PETSUV changesPET scansClinical practiceSolid lung nodulesClinical usefulnessLate scansBone marrowRegion of interestLung nodulesInput functionScansPatlak analysisKi imagesMin/T-testCorrelation coefficientTumorsSubjectsNodulesDynamic imagingPETComparison of [11C]UCB-J and [18F]FDG PET in Alzheimer’s disease: A tracer kinetic modeling study
Chen MK, Mecca AP, Naganawa M, Gallezot JD, Toyonaga T, Mondal J, Finnema SJ, Lin SF, O’Dell R, McDonald JW, Michalak HR, Vander Wyk B, Nabulsi NB, Huang Y, Arnsten AF, van Dyck CH, Carson RE. Comparison of [11C]UCB-J and [18F]FDG PET in Alzheimer’s disease: A tracer kinetic modeling study. Cerebrovascular And Brain Metabolism Reviews 2021, 41: 2395-2409. PMID: 33757318, PMCID: PMC8393289, DOI: 10.1177/0271678x211004312.Peer-Reviewed Original ResearchMeSH KeywordsAgedAged, 80 and overAlzheimer DiseaseFemaleFluorodeoxyglucose F18HumansMaleMiddle AgedPositron-Emission TomographyConceptsSynaptic densityMedial temporal regionsAlzheimer's diseaseNeocortical regionsTemporal regionsRelative outcome measuresMedial temporal lobeVivo PET imagingJ bindingOutcome measuresTemporal lobeMagnitude of reductionCN participantsBrain regionsAD participantsDiseasePET imagingConcordant reductionNormal participantsSynaptic vesiclesPerfusionMetabolismSuitable markerParticipantsSimilar pattern
2020
Reduced synaptic vesicle protein 2A binding in temporal lobe epilepsy: A [11C]UCB‐J positron emission tomography study
Finnema SJ, Toyonaga T, Detyniecki K, Chen M, Dias M, Wang Q, Lin S, Naganawa M, Gallezot J, Lu Y, Nabulsi NB, Huang Y, Spencer DD, Carson RE. Reduced synaptic vesicle protein 2A binding in temporal lobe epilepsy: A [11C]UCB‐J positron emission tomography study. Epilepsia 2020, 61: 2183-2193. PMID: 32944949, DOI: 10.1111/epi.16653.Peer-Reviewed Original ResearchConceptsMedial temporal lobe sclerosisTemporal lobe epilepsyTLE subjectsPositron emission tomographyLobe epilepsyJ BPSynaptic vesicle protein 2APartial volume correctionTemporal lobe sclerosisPositron emission tomography studyEmission tomography studiesSeizure onset zonePromising biomarker approachJ bindingPresurgical selectionSclerotic hippocampusHippocampal asymmetryTLE patientsRegional binding patternsControl subjectsCentrum semiovaleContralateral regionsEpilepsy patientsOutcome measuresOnset zone
2019
Measuring the effects of ketamine on mGluR5 using [18F]FPEB and PET
Holmes SE, Gallezot JD, Davis MT, DellaGioia N, Matuskey D, Nabulsi N, Krystal JH, Javitch JA, DeLorenzo C, Carson RE, Esterlis I. Measuring the effects of ketamine on mGluR5 using [18F]FPEB and PET. Cerebrovascular And Brain Metabolism Reviews 2019, 40: 2254-2264. PMID: 31744389, PMCID: PMC7585925, DOI: 10.1177/0271678x19886316.Peer-Reviewed Original ResearchConceptsEffects of ketamineKetamine infusionGlutamate transmissionMetabotropic glutamate receptor 5Ketamine-induced effectsKetamine-induced changesGlutamate receptor 5Promising treatment targetDrug challenge studiesTwo-tissue compartment modelMGluR5 radioligandBlood pressureMGluR5 availabilityBaseline scanOutcome measuresHealthy subjectsHeart ratePsychiatric disordersReceptor 5Modulatory effectsMGluR5Treatment targetsChallenge studiesArterial input functionChallenge paradigmData-driven voluntary body motion detection and non-rigid event-by-event correction for static and dynamic PET
Lu Y, Gallezot JD, Naganawa M, Ren S, Fontaine K, Wu J, Onofrey JA, Toyonaga T, Boutagy N, Mulnix T, Panin VY, Casey ME, Carson RE, Liu C. Data-driven voluntary body motion detection and non-rigid event-by-event correction for static and dynamic PET. Physics In Medicine And Biology 2019, 64: 065002. PMID: 30695768, DOI: 10.1088/1361-6560/ab02c2.Peer-Reviewed Original Research
2018
Improved discrimination between benign and malignant LDCT screening-detected lung nodules with dynamic over static 18F-FDG PET as a function of injected dose
Ye Q, Wu J, Lu Y, Naganawa M, Gallezot JD, Ma T, Liu Y, Tanoue L, Detterbeck F, Blasberg J, Chen MK, Casey M, Carson RE, Liu C. Improved discrimination between benign and malignant LDCT screening-detected lung nodules with dynamic over static 18F-FDG PET as a function of injected dose. Physics In Medicine And Biology 2018, 63: 175015. PMID: 30095083, PMCID: PMC6158045, DOI: 10.1088/1361-6560/aad97f.Peer-Reviewed Original ResearchConceptsPopulation-based input functionStandardized uptake valueImage-derived input functionLung nodulesClinical trialsTime-activity curvesLow-dose computed tomography (LDCT) screeningLung cancer mortality ratesIndeterminate lung nodulesComputed Tomography ScreeningF-FDG PETCancer mortality ratesStatic PET acquisitionVirtual clinical trialsScan durationTomography screeningFDG injectionPET scansMortality rateUptake valueAccurate diagnosisMalignant lung nodulesROC analysisPatient dataMalignant nodules
2015
Imaging human brown adipose tissue under room temperature conditions with 11C-MRB, a selective norepinephrine transporter PET ligand
Hwang JJ, Yeckel CW, Gallezot JD, Aguiar RB, Ersahin D, Gao H, Kapinos M, Nabulsi N, Huang Y, Cheng D, Carson RE, Sherwin R, Ding YS. Imaging human brown adipose tissue under room temperature conditions with 11C-MRB, a selective norepinephrine transporter PET ligand. Metabolism 2015, 64: 747-755. PMID: 25798999, PMCID: PMC4408242, DOI: 10.1016/j.metabol.2015.03.001.Peer-Reviewed Original ResearchConceptsBrown adipose tissueDistribution volume ratioSympathetic nervous systemAdipose tissueRole of BATCold stimulationFDG PET-CT imagingNorepinephrine transporterSupraclavicular brown adipose tissueHuman brown adipose tissueTotal body fatLean body massCold-stimulated conditionsBody temperaturePET-CT imagingBioelectrical impedance analysisCore body temperatureFDG uptakePET-CTOccipital cortexBody fatNervous systemBody compositionPET ligandBasal state