2022
Lipidomics and Redox Lipidomics Indicate Early Stage Alcohol‐Induced Liver Damage
Koelmel JP, Tan WY, Li Y, Bowden JA, Ahmadireskety A, Patt AC, Orlicky DJ, Mathé E, Kroeger NM, Thompson DC, Cochran JA, Golla JP, Kandyliari A, Chen Y, Charkoftaki G, Guingab‐Cagmat J, Tsugawa H, Arora A, Veselkov K, Kato S, Otoki Y, Nakagawa K, Yost RA, Garrett TJ, Vasiliou V. Lipidomics and Redox Lipidomics Indicate Early Stage Alcohol‐Induced Liver Damage. Hepatology Communications 2022, 6: 513-525. PMID: 34811964, PMCID: PMC8870008, DOI: 10.1002/hep4.1825.Peer-Reviewed Original ResearchConceptsAlcoholic fatty liver diseaseEthanol-treated miceFatty liver diseaseAlcohol consumption altersRegulation of triglycerideLiver lipidomeRegulation of phosphatidylcholineHepatic inflammationLiver biopsyLiver diseaseComprehensive time-course studyLiver damageHistological signsEarly biomarkersHistological markersMouse modelTime-course studyLiver tissueTriglyceridesHistological analysisEarly detectionLipid accumulationLiverMajor lipid classesDiet model
2021
Impaired GSH biosynthesis disrupts eye development, lens morphogenesis and PAX6 function
Thompson B, Chen Y, Davidson EA, Garcia-Milian R, Golla JP, Apostolopoulos N, Orlicky DJ, Schey K, Thompson DC, Vasiliou V. Impaired GSH biosynthesis disrupts eye development, lens morphogenesis and PAX6 function. The Ocular Surface 2021, 22: 190-203. PMID: 34425299, PMCID: PMC8560581, DOI: 10.1016/j.jtos.2021.08.010.Peer-Reviewed Original ResearchConceptsHEK293T cellsEye developmentGSH biosynthesisTransactivation activityPax6 functionReactive oxygen speciesSubsequent gene ontologyCell identity genesButhionine sulfoximineEpithelial cell identityRNA-seq analysisIngenuity Pathway AnalysisKey upstream regulatorIdentity genesCell identityGene OntologyRNA-seqImmune response genesBioinformatics analysisResponse genesGlutathione biosynthesisLens morphogenesisMolecular consequencesUpstream regulatorMicrophthalmia phenotypeIdentification of Dose-Dependent DNA Damage and Repair Responses From Subchronic Exposure to 1,4-Dioxane in Mice Using a Systems Analysis Approach
Charkoftaki G, Golla JP, Santos-Neto A, Orlicky DJ, Garcia-Milian R, Chen Y, Rattray NJW, Cai Y, Wang Y, Shearn CT, Mironova V, Wang Y, Johnson CH, Thompson DC, Vasiliou V. Identification of Dose-Dependent DNA Damage and Repair Responses From Subchronic Exposure to 1,4-Dioxane in Mice Using a Systems Analysis Approach. Toxicological Sciences 2021, 183: 338-351. PMID: 33693819, PMCID: PMC8921626, DOI: 10.1093/toxsci/kfab030.Peer-Reviewed Original ResearchConceptsDX exposureBile acid quantificationRepair responseBDF-1 miceDNA damageDose-dependent DNA damageEffects of exposureHistopathological studySubchronic exposureImmunohistochemical analysisLiver carcinogenLiver carcinogenicityLiver transcriptomicsDrinking waterMetabolomic profilingMicePotential mechanismsLiverEnvironmental chemicalsState maximum contaminant levelToxic effectsCell deathExposureOxidative stress responsePresent study
2020
Interplay between APC and ALDH1B1 in a newly developed mouse model of colorectal cancer
Golla JP, Kandyliari A, Tan WY, Chen Y, Orlicky DJ, Thompson DC, Shah YM, Vasiliou V. Interplay between APC and ALDH1B1 in a newly developed mouse model of colorectal cancer. Chemico-Biological Interactions 2020, 331: 109274. PMID: 33007288, PMCID: PMC9201852, DOI: 10.1016/j.cbi.2020.109274.Peer-Reviewed Original ResearchConceptsColorectal cancerColonic adenomasPresent preliminary studyMouse modelConsecutive daysLarge colonic adenomaPresence of adenomasApc mouse modelColon tumor growthMouse xenograft modelColon epithelial cellsFurther mechanistic studiesCancer mortalityKO miceLeading causeColorectal adenomasCRC developmentImmunohistochemical analysisXenograft modelTumor growthColorectal tumorigenesisAdenomasExpression scoreMale ApcMice
2018
Engineered Animal Models Designed for Investigating Ethanol Metabolism, Toxicity and Cancer
Marshall S, Chen Y, Singh S, Berrios-Carcamo P, Heit C, Apostolopoulos N, Golla JP, Thompson DC, Vasiliou V. Engineered Animal Models Designed for Investigating Ethanol Metabolism, Toxicity and Cancer. Advances In Experimental Medicine And Biology 2018, 1032: 203-221. PMID: 30362100, PMCID: PMC6743736, DOI: 10.1007/978-3-319-98788-0_14.ChaptersConceptsExact molecular mechanismsMouse modelCellular proteinsEthanol-induced tissue injuryEthanol metabolismEngineered Animal ModelsMolecular mechanismsAldehyde dehydrogenasesLong-term alcohol abuseAlcohol-induced diseasesFurther tissue damageAntioxidant glutathioneImportant mouse modelsCurrent understandingLeading causeTissue injuryIntracellular generationAlcohol abuseAlcohol consumptionAnimal modelsPathogenic eventsPathophysiological consequencesTissue damageMetabolismDNA adducts
2017
Metabolomic Analysis of Mice Exposed to Gamma Radiation Reveals a Systemic Understanding of Total-Body Exposure
Golla S, Golla JP, Krausz KW, Manna SK, Simillion C, Beyoğlu D, Idle JR, Gonzalez FJ. Metabolomic Analysis of Mice Exposed to Gamma Radiation Reveals a Systemic Understanding of Total-Body Exposure. Radiation Research 2017, 187: 612-629. PMID: 28467754, PMCID: PMC5539505, DOI: 10.1667/rr14592.1.Peer-Reviewed Original ResearchConceptsTotal body exposureRadiation exposureUltra-performance liquid chromatography-electrospray ionization-quadrupole timeBile acid metabolismChronic radiation toxicityMultiple radiation exposuresTissue-specific biomarkersMetabolomic analysisPotential novel approachGamma-irradiated groupsRadiation toxicityResponse markersBone marrowFunctional alterationsLiquid chromatography-electrospray ionization-quadrupole timeTriage protocolSpecific biomarkersDiagnostic markerMetabolic signaturesRadiosensitive tissuesMetabolic changesH postirradiationBiomarkersAcid metabolismTissue-level responses
2015
St. John's Wort Attenuates Colorectal Carcinogenesis in Mice through Suppression of Inflammatory Signaling
Manna SK, Golla S, Golla JP, Tanaka N, Cai Y, Takahashi S, Krausz KW, Matsubara T, Korboukh I, Gonzalez FJ. St. John's Wort Attenuates Colorectal Carcinogenesis in Mice through Suppression of Inflammatory Signaling. Cancer Prevention Research 2015, 8: 786-795. PMID: 26069204, PMCID: PMC4584416, DOI: 10.1158/1940-6207.capr-14-0113.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnticarcinogenic AgentsAzoxymethaneCarcinogenesisCell Transformation, NeoplasticColonColorectal NeoplasmsDietDietary SupplementsDisease Models, AnimalExtracellular Signal-Regulated MAP KinasesHypericumInflammationMaleMiceNF-kappa BOligonucleotide Array Sequence AnalysisOligonucleotidesPlant ExtractsSignal TransductionConceptsDiet-fed miceSJW extractColorectal carcinogenesisAzoxymethane-induced colorectal carcinogenesisAIN-93G dietLong-term treatment regimensAzoxymethane-treated miceEffect of SJWNuclear factor kappa BBody weight lossWort extractTotal tumor volumeFactor kappa BSt. John's wort extractDose-dependent mannerAzoxymethane treatmentSJW administrationRectal bleedingOverall survivalTreatment regimensColorectal cancerProinflammatory processesTumor multiplicityLarge tumorsCholesterol levels