2020
Effect of a Low-Fat Vegan Diet on Body Weight, Insulin Sensitivity, Postprandial Metabolism, and Intramyocellular and Hepatocellular Lipid Levels in Overweight Adults
Kahleova H, Petersen KF, Shulman GI, Alwarith J, Rembert E, Tura A, Hill M, Holubkov R, Barnard ND. Effect of a Low-Fat Vegan Diet on Body Weight, Insulin Sensitivity, Postprandial Metabolism, and Intramyocellular and Hepatocellular Lipid Levels in Overweight Adults. JAMA Network Open 2020, 3: e2025454. PMID: 33252690, PMCID: PMC7705596, DOI: 10.1001/jamanetworkopen.2020.25454.Peer-Reviewed Original ResearchMeSH KeywordsAbsorptiometry, PhotonAdultAgedBlood GlucoseBody CompositionBody WeightCholesterolCholesterol, HDLCholesterol, LDLC-PeptideDiet, Fat-RestrictedDiet, VeganEnergy IntakeEnergy MetabolismFemaleGlycated HemoglobinHepatocytesHumansInsulinInsulin ResistanceIntra-Abdominal FatLipid MetabolismLiverMaleMiddle AgedMuscle Fibers, SkeletalMuscle, SkeletalObesityOverweightPostprandial PeriodProton Magnetic Resonance SpectroscopyTriglyceridesConceptsLow-fat vegan dietHomeostasis model assessment indexIntramyocellular lipid levelsModel assessment indexIntervention groupLipid levelsBody weightInsulin resistancePostprandial metabolismVegan dietOverweight adultsDietary interventionInsulin sensitivityThermic effectControl groupPlant-based dietary interventionDual X-ray absorptiometryInsulin resistance leadExcess body weightInsulin sensitivity indexType 2 diabetesMajor health problemProton magnetic resonance spectroscopyX-ray absorptiometrySubset of participantsEffect of a ketogenic diet on hepatic steatosis and hepatic mitochondrial metabolism in nonalcoholic fatty liver disease
Luukkonen PK, Dufour S, Lyu K, Zhang XM, Hakkarainen A, Lehtimäki TE, Cline GW, Petersen KF, Shulman GI, Yki-Järvinen H. Effect of a ketogenic diet on hepatic steatosis and hepatic mitochondrial metabolism in nonalcoholic fatty liver disease. Proceedings Of The National Academy Of Sciences Of The United States Of America 2020, 117: 7347-7354. PMID: 32179679, PMCID: PMC7132133, DOI: 10.1073/pnas.1922344117.Peer-Reviewed Original ResearchMeSH KeywordsBody CompositionCitrate (si)-SynthaseDiet, KetogenicFatty AcidsFatty Acids, NonesterifiedFatty LiverFemaleHumansInsulinInsulin ResistanceLipoproteins, VLDLLiverMaleMiddle AgedMitochondriaNon-alcoholic Fatty Liver DiseaseObesityOverweightOxidation-ReductionPyruvate CarboxylaseTriglyceridesConceptsNonalcoholic fatty liver diseaseFatty liver diseaseIntrahepatic triglyceridesKetogenic dietHepatic insulin resistanceNonesterified fatty acidsInsulin resistanceLiver diseaseOverweight/obese subjectsHepatic mitochondrial redox stateSerum insulin concentrationsHepatic mitochondrial metabolismProton magnetic resonance spectroscopyStable isotope infusionKD dietObese subjectsFatty acidsPlasma leptinHepatic steatosisInsulin concentrationsNEFA concentrationsBody weightTriiodothyronine concentrationsIsotope infusionWeight loss
2001
Overexpression of the LAR (leukocyte antigen-related) protein-tyrosine phosphatase in muscle causes insulin resistance
Zabolotny J, Kim Y, Peroni O, Kim J, Pani M, Boss O, Klaman L, Kamatkar S, Shulman G, Kahn B, Neel B. Overexpression of the LAR (leukocyte antigen-related) protein-tyrosine phosphatase in muscle causes insulin resistance. Proceedings Of The National Academy Of Sciences Of The United States Of America 2001, 98: 5187-5192. PMID: 11309481, PMCID: PMC33185, DOI: 10.1073/pnas.071050398.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlood GlucoseBody CompositionCreatine KinaseCreatine Kinase, MM FormFatty Acids, NonesterifiedHumansInsulinInsulin ResistanceIntracellular Signaling Peptides and ProteinsIsoenzymesMiceMice, TransgenicMusclesOrgan SpecificityPhosphatidylinositol 3-KinasesPhosphorylationPhosphotyrosinePromoter Regions, GeneticProtein Tyrosine Phosphatase, Non-Receptor Type 6Protein Tyrosine PhosphatasesRecombinant Fusion ProteinsSignal TransductionConceptsIRS proteinsLAR protein tyrosine phosphataseKinase activityProtein tyrosine phosphatase LARIRS-2Insulin receptor substrate-1Protein tyrosine phosphatasePI3-kinase activityInsulin-resistant humansReceptor substrate-1Association of p85alphaInsulin resistanceInsulin-responsive tissuesHuman LARTyrosyl phosphorylationInsulin target tissuesTransgenic miceSubstrate-1IRS-1Wild-type controlsInsulin receptorWhole-body glucose disposalWhole-body insulin resistancePhosphotyrosinePhosphorylation
2000
Mechanism of Insulin Resistance in A-ZIP/F-1 Fatless Mice*
Kim J, Gavrilova O, Chen Y, Reitman M, Shulman G. Mechanism of Insulin Resistance in A-ZIP/F-1 Fatless Mice*. Journal Of Biological Chemistry 2000, 275: 8456-8460. PMID: 10722680, DOI: 10.1074/jbc.275.12.8456.Peer-Reviewed Original ResearchConceptsType 2 diabetesInsulin resistanceFatless miceInsulin actionTriglyceride contentA-ZIP/FDevelopment of diabetesLiver triglyceride contentHyperinsulinemic-euglycemic clampAccumulation of triglyceridesMuscle/liverWild-type littermatesInsulin receptor substrate-1Receptor substrate-1Partitioning of fatSubsequent impairmentDiabetesFat metabolismMiceFat tissueLiverInsulin signalingMuscleLatter tissueSubstrate-1