2015
Two Na+ Sites Control Conformational Change in a Neurotransmitter Transporter Homolog*
Tavoulari S, Margheritis E, Nagarajan A, DeWitt DC, Zhang YW, Rosado E, Ravera S, Rhoades E, Forrest LR, Rudnick G. Two Na+ Sites Control Conformational Change in a Neurotransmitter Transporter Homolog*. Journal Of Biological Chemistry 2015, 291: 1456-1471. PMID: 26582198, PMCID: PMC4714228, DOI: 10.1074/jbc.m115.692012.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SubstitutionAmino Acid Transport SystemsAquatic OrganismsBacterial ProteinsBinding SitesCysteineGram-Negative BacteriaLigandsLiposomesModels, MolecularMolecular Dynamics SimulationMutagenesis, Site-DirectedMutationPlasma Membrane Neurotransmitter Transport ProteinsProtein ConformationProtein FoldingProtein StabilityProteolipidsRecombinant ProteinsSodiumConceptsConformational changesTransmembrane helix 1Open conformational stateDependent conformational changesTransporter homologExtracellular gateProkaryotic homologCytoplasmic pathwayHelix 1Interaction networksIntermediary interactionsBiophysical assaysNeurotransmitter transportersSubstrate pathwayNa2 siteConformational statesHelix motionsLeuTDirect interactionDependent closureHomologMutantsDistinct stepsResiduesComputational analysis
2013
How do transporters couple solute movements?
Rudnick G. How do transporters couple solute movements? Molecular Membrane Biology 2013, 30: 355-359. PMID: 24147977, PMCID: PMC4077868, DOI: 10.3109/09687688.2013.842658.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsMeSH KeywordsBinding SitesBiological TransportCarrier ProteinsIon TransportLigandsMembrane Transport ProteinsModels, MolecularProtein Conformation
2008
Mechanism for alternating access in neurotransmitter transporters
Forrest LR, Zhang YW, Jacobs MT, Gesmonde J, Xie L, Honig BH, Rudnick G. Mechanism for alternating access in neurotransmitter transporters. Proceedings Of The National Academy Of Sciences Of The United States Of America 2008, 105: 10338-10343. PMID: 18647834, PMCID: PMC2480614, DOI: 10.1073/pnas.0804659105.Peer-Reviewed Original ResearchConceptsNeurotransmitter transportersMammalian neurotransmitter transportersMammalian serotonin transporterTransmembrane helix 1Bacterial homologueIon-binding sitesTransporter familyExtensive mutagenesisHelix 1Similar repeatsLeuTConformational changesSerotonin transporterRepeatsAlternate conformationConformational differencesExtracellular pathwaysCytoplasmTransportersExtracellular spaceCysteine reagentCrystal structureConformationPathwayAccessibility measurements
2007
Interaction between lysine 102 and aspartate 338 in the insect amino acid cotransporter KAAT1
Castagna M, Soragna A, Mari S, Santacroce M, Betté S, Mandela P, Rudnick G, Peres A, Sacchi V. Interaction between lysine 102 and aspartate 338 in the insect amino acid cotransporter KAAT1. American Journal Of Physiology - Cell Physiology 2007, 293: c1286-c1295. PMID: 17626242, DOI: 10.1152/ajpcell.00190.2007.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAmino Acid SubstitutionAmino Acid Transport Systems, NeutralAnimalsAspartic AcidBinding SitesBiological TransportCross-Linking ReagentsCysteineDithiothreitolFemaleInsect ProteinsKineticsLepidopteraLysineModels, MolecularMolecular Sequence DataOocytesPhenanthrolinesPotassiumProtein Structure, TertiarySequence Homology, Amino AcidSodiumTryptophanXenopus laevisConceptsSingle cysteine mutantsNeutral amino acid transporterSite-directed mutagenesisAmino acid transportersTransport-associated currentNSS transportersDouble mutantXenopus laevis oocytesCysteine mutantsWild typeDependent transportLysine 102MutantsSuper familyAcid transportersPermeation pathwayAmino acidsDisulfide bondsLaevis oocytesFunctional evidenceAsp338Leucine uptakeKAAT1Spatial organizationResidues
1998
Critical Amino Acid Residues in Transmembrane Span 7 of the Serotonin Transporter Identified by Random Mutagenesis*
Penado K, Rudnick G, Stephan M. Critical Amino Acid Residues in Transmembrane Span 7 of the Serotonin Transporter Identified by Random Mutagenesis*. Journal Of Biological Chemistry 1998, 273: 28098-28106. PMID: 9774428, DOI: 10.1074/jbc.273.43.28098.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBiological TransportCarrier ProteinsMembrane GlycoproteinsMembrane Transport ProteinsModels, MolecularMolecular Sequence DataMutagenesisNerve Tissue ProteinsProtein ConformationRatsSerotoninSerotonin Plasma Membrane Transport ProteinsStructure-Activity RelationshipConceptsAmino acid residuesRandom mutagenesisAcid residuesTransport activityCritical amino acid residuesRat brain serotonin transporterCritical residuesTransport cycleWild typeNonconservative mutationsStructural predictionsTransporter functionLater stepsMutationsSerotonin transporterResiduesMutagenesisHydrophobic substitutionsTyr-385TransportersMutantsActivitySubstitutionNearby positions
1993
From synapse to vesicle: The reuptake and storage of biogenic amine neurotransmitters
Rudnick G, Clark J. From synapse to vesicle: The reuptake and storage of biogenic amine neurotransmitters. Biochimica Et Biophysica Acta 1993, 1144: 249-263. PMID: 8104483, DOI: 10.1016/0005-2728(93)90109-s.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsPresynaptic plasma membraneBiogenic amine neurotransmittersEndogenous regulatory mechanismsSynaptic transmitter levelsPlasma membraneIndividual proteinsRegulatory mechanismsTransport systemMolecular levelSynaptic vesiclesAmine neurotransmittersIon gradientsTransportersVesiclesCDNARapid progressProteinNeurotransmittersRegulationMechanismMembraneSynapseTransmitter levels