2023
Bridging the Coordination Chemistry of Small Compounds and Metalloproteins Using Machine Learning
Kapuścińska K, Dukała Z, Doha M, Ansari E, Wang J, Brudvig G, Brooks B, Amin M. Bridging the Coordination Chemistry of Small Compounds and Metalloproteins Using Machine Learning. Journal Of Chemical Information And Modeling 2023, 64: 2586-2593. PMID: 38054243, DOI: 10.1021/acs.jcim.3c01564.Peer-Reviewed Original ResearchOxidation stateMetal ionsActive siteCambridge Crystallographic Data CentreMetal oxidation stateElectron transfer reactionsStandard reduction potentialLower oxidation statesX-ray crystallographyCoordination chemistryCryogenic electron microscopyMetal clustersTransfer reactionsReaction mechanismReduction potentialXFEL crystallographyMetalloproteinsAppropriate experimental conditionsSmall moleculesCrystallographySmall compoundsSpecific reactionElectron microscopyRemarkable efficiencyMetals
2019
N,N,O Pincer Ligand with a Deprotonatable Site That Promotes Redox‐Leveling, High Mn Oxidation States, and a Mn2O2 Dimer Competent for Catalytic Oxygen Evolution
Lant H, Michaelos T, Sharninghausen L, Mercado B, Crabtree R, Brudvig G. N,N,O Pincer Ligand with a Deprotonatable Site That Promotes Redox‐Leveling, High Mn Oxidation States, and a Mn2O2 Dimer Competent for Catalytic Oxygen Evolution. European Journal Of Inorganic Chemistry 2019, 2019: 2115-2123. DOI: 10.1002/ejic.201801343.Peer-Reviewed Original ResearchAlkoxide moietyOxidation stateOxygen evolutionHigher Mn oxidation statesCatalytic oxygen evolutionO-pincer ligandMn oxidation statePincer ligandRedox levelingElectrochemical dataLow overpotentialProtonation stateProton lossEPR experimentsMn IIIO intermediateRelated seriesMn–VMn IIMoietyLigandsOverpotentialDicationCatalystCatalysisModification of a pyridine-alkoxide ligand during the synthesis of coordination compounds
Shopov D, Sharninghausen L, Sinha S, Mercado B, Brudvig G, Crabtree R. Modification of a pyridine-alkoxide ligand during the synthesis of coordination compounds. Inorganica Chimica Acta 2019, 484: 75-78. DOI: 10.1016/j.ica.2018.09.020.Peer-Reviewed Original ResearchPyridine-alkoxide ligandsWater oxidation catalysisHigher oxidation statesCoordination compoundsPincer ligandGeminal methyl groupsCatalytic conditionsOxidation stateOxidation catalystReaction conditionsMinor byproductsAliphatic alkenesMinor productsOxidative conditionsMethyl groupN-oxideLigandsBlue solutionCH groupPincerStructural analoguesSynthesisComplexesCatalystCentral unit
2018
Some crystal growth strategies for diffraction structure studies of iridium complexes
Sharninghausen L, Sinha S, Shopov D, Brudvig G, Crabtree R. Some crystal growth strategies for diffraction structure studies of iridium complexes. Inorganica Chimica Acta 2018, 480: 183-188. DOI: 10.1016/j.ica.2018.05.017.Peer-Reviewed Original ResearchHydrogen bonding groupsHigher oxidation statesCrystal growth strategiesLarge enough crystalsCluster anionsIr complexesCluster cationsIridium complexesHydrogen bondingOxidation stateStandard crystallization methodsGel methodBonding groupsEnough crystalsCrystallization methodStructure studiesComplexesNeutron diffractionAnionsCationsHydrideBondingDiolDiffractionButane
2015
Comparison of dppf‐Supported Nickel Precatalysts for the Suzuki–Miyaura Reaction: The Observation and Activity of Nickel(I)
Guard L, Beromi M, Brudvig G, Hazari N, Vinyard D. Comparison of dppf‐Supported Nickel Precatalysts for the Suzuki–Miyaura Reaction: The Observation and Activity of Nickel(I). Angewandte Chemie 2015, 127: 13550-13554. DOI: 10.1002/ange.201505699.Peer-Reviewed Original ResearchSuzuki–Miyaura reactionNi II complexesSimilar catalytic activityDppf ligandNickel precatalystsNi precatalystsOxidation stateCatalytic activityPrecatalystHeterocyclic substratesNi 0Potential chemicalI speciesReactionII complexesRoom temperaturePd systemLigandsComplexesChemicalsNiSignificant amountSubstrateInterfacial electron transfer in photoanodes based on phosphorus( v ) porphyrin sensitizers co-deposited on SnO 2 with the Ir(III)Cp* water oxidation precatalyst
Poddutoori P, Thomsen J, Milot R, Sheehan S, Negre C, Garapati V, Schmuttenmaer C, Batista V, Brudvig G, van der Est A. Interfacial electron transfer in photoanodes based on phosphorus( v ) porphyrin sensitizers co-deposited on SnO 2 with the Ir(III)Cp* water oxidation precatalyst. Journal Of Materials Chemistry A 2015, 3: 3868-3879. DOI: 10.1039/c4ta07018f.Peer-Reviewed Original ResearchInterfacial electron transferElectron paramagnetic resonanceQuantum dynamics simulationsElectron transferPhotoanode componentCatalytic water oxidationEfficient interfacial electron transferDynamics simulationsMetal oxide surfacesSolar cellsTime-resolved terahertz spectroscopy measurementsSteady-state fluorescenceTypes of porphyrinsTerahertz spectroscopy measurementsOxidation precatalystWater oxidationAxial coordinationChloride ligandsPorphyrin sensitizersOxidation stateCharge recombinationParamagnetic resonanceSnO 2Phosphorus porphyrinsSpectroscopy measurements
2013
Water oxidation chemistry of photosystem II
Brudvig G. Water oxidation chemistry of photosystem II. The FASEB Journal 2013, 27: 98.1-98.1. DOI: 10.1096/fasebj.27.1_supplement.98.1.Peer-Reviewed Original ResearchOxygen-evolving complexWater oxidation chemistryOxidation chemistryCrystal structurePhotosystem IISubstrate water moleculesRedox-active tyrosinesX-ray crystal structureFour-electron oxidationIntermediate oxidation statesSolar fuel productionSignificant side reactionsSpecific redox stateCyanobacterial photosystem IIDesign of materialsInorganic chemistryX-ray crystallographic informationRedox stateOxidation stateWater moleculesCatalytic cycleENDOR spectroscopySide reactionsChemical problemsSpectroscopic data
2011
An Iridium(IV) Species, [Cp*Ir(NHC)Cl]+, Related to a Water-Oxidation Catalyst
Brewster T, Blakemore J, Schley N, Incarvito C, Hazari N, Brudvig G, Crabtree R. An Iridium(IV) Species, [Cp*Ir(NHC)Cl]+, Related to a Water-Oxidation Catalyst. Organometallics 2011, 30: 965-973. DOI: 10.1021/om101016s.Peer-Reviewed Original ResearchWater oxidation catalystsOne-electron stepsX-ray crystallographyWingtip groupsElectrochemical characterizationLigand environmentElectrochemical behaviorOxidation stateEPR spectroscopyNew compoundsCatalystRhombic symmetryCompoundsΚ2 CC donorsPrecatalystNHCChelatesCrystallographySpectroscopyLigandsCatalyticPrecursorsCharacterizationWater
2004
Q-Band EPR of the S2 State of Photosystem II Confirms an S=5/2 Origin of the X-Band g=4.1 Signal
Haddy A, Lakshmi K, Brudvig G, Frank H. Q-Band EPR of the S2 State of Photosystem II Confirms an S=5/2 Origin of the X-Band g=4.1 Signal. Biophysical Journal 2004, 87: 2885-2896. PMID: 15454478, PMCID: PMC1304705, DOI: 10.1529/biophysj.104.040238.Peer-Reviewed Original ResearchConceptsSame spin systemS2 stateSpin systemsZero-field splitting valuesMiddle Kramers doubletPhotosystem IILight-induced signalsS2 oxidation stateX-bandKramers doubletX-band signalQ-band EPRPSII-enriched membrane fragmentsSplitting valuesLow-field signalMn clusterQ-bandState originEPR signalOxidation stateStateDoubletSpectraSignalsGHz
2000
Low-Frequency Resonance Raman Characterization of the Oxygen-Evolving Complex of Photosystem II
Cua A, Stewart D, Reifler M, Brudvig G, Bocian D. Low-Frequency Resonance Raman Characterization of the Oxygen-Evolving Complex of Photosystem II. Journal Of The American Chemical Society 2000, 122: 2069-2077. DOI: 10.1021/ja9932885.Peer-Reviewed Original ResearchO2-evolving complexMn4 clusterS2 statePhotosystem IIRedox-active tyrosinesLow-energy electronic transitionsRaman spectraElectronic transitionsS1 stateVibrational modesOxygen-Evolving ComplexRaman studiesS2 oxidation stateRaman scatteringResonance Raman CharacterizationExcitation Raman spectroscopyTetramanganese clusterCoordination environmentNIR transitionsVibrational spectroscopyOxidation stateMolecular structureD2O/H2O exchangeOH groupsRaman spectroscopy
1994
A modified MM2 force field for high-valent di-μ-oxo manganese dimers
Manchanda R, Zimmer M, Brudvig G, Crabtree R. A modified MM2 force field for high-valent di-μ-oxo manganese dimers. Journal Of Molecular Structure 1994, 323: 257-266. DOI: 10.1016/0022-2860(94)08304-5.Peer-Reviewed Original Research
1992
Calcium binding site(s) of Photosystem II as probed by lanthanides
Bakou A, Buser C, Dandulakis G, Brudvig G, Ghanotakis D. Calcium binding site(s) of Photosystem II as probed by lanthanides. Biochimica Et Biophysica Acta (BBA) - Bioenergetics 1992, 1099: 131-136. DOI: 10.1016/0005-2728(92)90209-k.Peer-Reviewed Original Research
1991
Mechanism of irreversible inhibition of O2 evolution in photosystem II by Tris(hydroxymethyl)aminomethane.
Rickert K, Sears J, Beck W, Brudvig G. Mechanism of irreversible inhibition of O2 evolution in photosystem II by Tris(hydroxymethyl)aminomethane. Biochemistry 1991, 30: 7888-94. PMID: 1651110, DOI: 10.1021/bi00246a003.Peer-Reviewed Original ResearchConceptsMn complexesPSII membranesRate of reactionO2 evolutionLow-temperature electron paramagnetic resonance (EPR) spectroscopyElectron paramagnetic resonance spectroscopyElectron donation reactionsPhotosystem IIElectron donation abilityParamagnetic resonance spectroscopyOxidation stateTris treatmentResonance spectroscopyS1 stateDark reactionTriIrreversible inhibitionReactionComplexesAminesIonsO2Effect of TrisMn2Spectroscopy
1990
Electron Spin-Lattice Relaxation of the Stable Tyrosine Radical D+ in Photosystem II
Beck W, Innes J, Brudvig G. Electron Spin-Lattice Relaxation of the Stable Tyrosine Radical D+ in Photosystem II. 1990, 817-820. DOI: 10.1007/978-94-009-0511-5_188.Peer-Reviewed Original ResearchMn complexesO2-evolving centerDark stable S1 statePhotosystem IIPhotosynthetic H2O oxidationElectron paramagnetic resonance spectraRedox-active sitesWeak dipolar couplingsParamagnetic resonance spectraH2O oxidationOxidation stateTyrosine radicalsDipolar couplingsResonance spectraS0 stateS1 stateTyr-160D2 polypeptidesRelaxation propertiesSpin-lattice relaxation rateMagnetic propertiesElectron spin-lattice relaxation rateSpin-lattice relaxationComplexesRelaxation rate
1989
Oxidation of exogenous substrates by the O2-evolving center of photosystem II and related catalytic air oxidation of secondary alcohols via a tetranuclear manganese(IV) complex.
Beck W, Sears J, Brudvig G, Kulawiec R, Crabtree* R. Oxidation of exogenous substrates by the O2-evolving center of photosystem II and related catalytic air oxidation of secondary alcohols via a tetranuclear manganese(IV) complex. Tetrahedron 1989, 45: 4903-4911. DOI: 10.1016/s0040-4020(01)85159-0.Peer-Reviewed Original ResearchMn complexesH2O oxidationOxidation stateAir oxidationStrong oxidantsSecondary alcoholsPhotosynthetic H2O oxidationPhotosystem IIS1 stateLower oxidation statesCatalytic air oxidationLight-driven generationO2 evolution activityOxidation chemistryO2-evolving centerCatalytic cycleOxidizing statePrimary aminesSecondary aminesReductive mechanismOxidationComplexesExogenous ligandsCenter actsOxidants
1987
Reactions of hydroxylamine with the electron-donor side of photosystem II.
Beck W, Brudvig G. Reactions of hydroxylamine with the electron-donor side of photosystem II. Biochemistry 1987, 26: 8285-95. PMID: 2831941, DOI: 10.1021/bi00399a040.Peer-Reviewed Original ResearchConceptsReaction of hydroxylamineMn complexesElectron donor sideO2-evolving centerCharge separationPSII membranesLow-temperature electron paramagnetic resonance (EPR) spectroscopyPhotosystem IIElectron paramagnetic resonance spectroscopyS2-state multiline EPR signalS1 stateTwo-electron reductionOne-electron photooxidationParamagnetic resonance spectroscopyN-methyl-substituted analoguesRadical oxidation productsO2 evolution activityMultiline EPR signalOxidation stateThylakoid membrane preparationsOxidation productsEvolution activityProlonged dark incubationEPR signalResonance spectroscopyThe tetranuclear manganese complex of Photosystem II
Brudvig G. The tetranuclear manganese complex of Photosystem II. Journal Of Bioenergetics And Biomembranes 1987, 19: 91-104. PMID: 3034873, DOI: 10.1007/bf00762719.Peer-Reviewed Original ResearchConceptsManganese complexesElectron paramagnetic resonance (EPR) spectroscopic studiesManganese ionsS2 stateTetranuclear manganese complexPhotosystem IIFour-electron oxidationIntermediate oxidation statesDisplacement of O2Coordination chemistryOxidation stateO bondSpectroscopic studiesS4 stateMagnetic propertiesComplexesIonsLike structureManganeseMn4O4ChemistryStructureBondsOxidationProperties
1986
Differential scanning calorimetric studies of photosystem II: evidence for a structural role for cytochrome b559 in the oxygen-evolving complex.
Thompson L, Sturtevant J, Brudvig G. Differential scanning calorimetric studies of photosystem II: evidence for a structural role for cytochrome b559 in the oxygen-evolving complex. Biochemistry 1986, 25: 6161-9. PMID: 3790512, DOI: 10.1021/bi00368a050.Peer-Reviewed Original ResearchConceptsOxygen-evolving complexDifferential scanning calorimetryCytochrome b559Oxygen evolution activityPeak A2Photosystem IIDifferential scanning calorimetric studiesOxidation stateRelative peak areasScanning calorimetric studiesEvolution activityDSC studiesScanning calorimetryDSC tracesPeak areaC temperature rangeDegrees C temperature rangeEndothermic transitionLight-harvesting chlorophyllLow temperature shoulderDSC peakNew probeCalorimetric studiesB559PS IIMechanism for photosynthetic O2 evolution.
Brudvig G, Crabtree R. Mechanism for photosynthetic O2 evolution. Proceedings Of The National Academy Of Sciences Of The United States Of America 1986, 83: 4586-4588. PMID: 3460059, PMCID: PMC323785, DOI: 10.1073/pnas.83.13.4586.Peer-Reviewed Original ResearchConceptsO2-evolving complexManganese complexesPhotosynthetic O2 evolutionS2 stateCubane-like complexCubane-like structureIntermediate oxidation statesEPR spectral dataO2 evolutionSpectral dataDisplacement of O2Coordination chemistryOxidation stateO bondS4 stateRecent EPRUV spectral dataManganese sitesStructural conversionComplexesMolecular mechanismsMn4O4ChemistryStructureEPR