2023
(Invited) Water Oxidation Catalysis with Atomically Defined Active Sites on Nanostructured Materials for Solar Energy Applications
Brudvig G. (Invited) Water Oxidation Catalysis with Atomically Defined Active Sites on Nanostructured Materials for Solar Energy Applications. ECS Meeting Abstracts 2023, MA2023-01: 2149-2149. DOI: 10.1149/ma2023-01372149mtgabs.Peer-Reviewed Original ResearchWater oxidation catalystsMolecular catalystsSolar fuel productionWater oxidationMolecular water oxidation catalystsPhoto-electrochemical water oxidationWater oxidation catalysisNatural photosynthetic systemsPhotoelectrochemical water oxidationMetal oxide surfacesMetal oxide photoanodesFuel productionOxidation catalysisCatalytic performanceOxide photoanodesOxide surfaceNanostructured materialsBioinspired materialsCatalystLimited stabilityActive siteOxide materialsHigh activityPhotosynthetic systemsSolar energy applications
2020
Surface-Attached Molecular Catalysts on Visible-Light-Absorbing Semiconductors: Opportunities and Challenges for a Stable Hybrid Water-Splitting Photoanode
Liu H, Cody C, Jayworth J, Crabtree R, Brudvig G. Surface-Attached Molecular Catalysts on Visible-Light-Absorbing Semiconductors: Opportunities and Challenges for a Stable Hybrid Water-Splitting Photoanode. ACS Energy Letters 2020, 5: 3195-3202. DOI: 10.1021/acsenergylett.0c01719.Peer-Reviewed Original ResearchMolecular water oxidation catalystsWater splitting photoanodesSolar fuel generationWater oxidation catalystsHybrid photoanodeLong-term stabilityMolecular catalystsFuel generationCharacterization techniquesPhotoanodeStudy of degradationGreat promiseCell consistsCatalystPractical applicationsSemiconductorsDesign strategyStabilityCrucial subjectFuture directionsApplicationsPromiseDegradation
2017
Photodriven Oxidation of Surface-Bound Iridium-Based Molecular Water-Oxidation Catalysts on Perylene-3,4-dicarboximide-Sensitized TiO2 Electrodes Protected by an Al2O3 Layer
Kamire R, Materna K, Hoffeditz W, Phelan B, Thomsen J, Farha O, Hupp J, Brudvig G, Wasielewski M. Photodriven Oxidation of Surface-Bound Iridium-Based Molecular Water-Oxidation Catalysts on Perylene-3,4-dicarboximide-Sensitized TiO2 Electrodes Protected by an Al2O3 Layer. The Journal Of Physical Chemistry C 2017, 121: 3752-3764. DOI: 10.1021/acs.jpcc.6b11672.Peer-Reviewed Original ResearchMolecular water oxidation catalystsDye-sensitized photoelectrochemical cellsWater oxidation catalystsCharge transfer dynamicsSolar fuel productionCharge recombinationAtomic layer depositionHigher photocurrentTransfer dynamicsDye-sensitized TiO2 photoanodesFemtosecond transient absorption spectroscopyCharge transfer rateTransient absorption spectroscopyALD layersFuel productionDicarboximide chromophorePhotodriven oxidationMononuclear catalystsDinuclear catalystsCatalyst oxidationDye moleculesInitial charge injectionMolecular structurePhotoelectrochemical experimentsAbsorption spectroscopy
2015
Hematite‐Based Solar Water Splitting in Acidic Solutions: Functionalization by Mono‐ and Multilayers of Iridium Oxygen‐Evolution Catalysts
Li W, Sheehan S, He D, He Y, Yao X, Grimm R, Brudvig G, Wang D. Hematite‐Based Solar Water Splitting in Acidic Solutions: Functionalization by Mono‐ and Multilayers of Iridium Oxygen‐Evolution Catalysts. Angewandte Chemie 2015, 127: 11590-11594. DOI: 10.1002/ange.201504427.Peer-Reviewed Original ResearchWater oxidation catalystsSolar water splittingWater splittingAcidic solutionMolecular water oxidation catalystsStable water oxidation catalystsNear-unity Faradaic efficiencyOxygen evolution catalystsStable solar water splittingFaradaic efficiencyPhotoelectrochemical cellsImportant technological implicationsCatalystLow pHMonolayers