2023
Dominant Role of Hole Transport Pathway in Achieving Record High Photoconductivity in Two‐Dimensional Metal–Organic Frameworks
Wang D, Ostresh S, Streater D, He P, Nyakuchena J, Ma Q, Zhang X, Neu J, Brudvig G, Huang J. Dominant Role of Hole Transport Pathway in Achieving Record High Photoconductivity in Two‐Dimensional Metal–Organic Frameworks. Angewandte Chemie 2023, 135 DOI: 10.1002/ange.202309505.Peer-Reviewed Original ResearchTransient absorption spectroscopyX-ray transient absorption spectroscopyPhotoelectric devicesAbsorption spectroscopyOptical transient absorption spectroscopyTime-resolved terahertz spectroscopyHigh photoconductivityHole transport mechanismTwo-dimensional metalsElectron dynamicsDensity functional theory calculationsTerahertz spectroscopyElectronic statesFunctional theory calculationsMetal-organic frameworksPhotoconductivityTheory calculationsCharge transportMobile chargesSpectroscopyHole transport pathwaysCharge transport pathwaysDominant Role of Hole Transport Pathway in Achieving Record High Photoconductivity in Two‐Dimensional Metal–Organic Frameworks
Wang D, Ostresh S, Streater D, He P, Nyakuchena J, Ma Q, Zhang X, Neu J, Brudvig G, Huang J. Dominant Role of Hole Transport Pathway in Achieving Record High Photoconductivity in Two‐Dimensional Metal–Organic Frameworks. Angewandte Chemie International Edition 2023, 62: e202309505. PMID: 37872121, DOI: 10.1002/anie.202309505.Peer-Reviewed Original ResearchTransient absorption spectroscopyX-ray transient absorption spectroscopyPhotoelectric devicesAbsorption spectroscopyOptical transient absorption spectroscopyTime-resolved terahertz spectroscopyHigh photoconductivityHole transport mechanismTwo-dimensional metalsElectron dynamicsDensity functional theory calculationsTerahertz spectroscopyElectronic statesFunctional theory calculationsMetal-organic frameworksPhotoconductivityTheory calculationsCharge transportMobile chargesSpectroscopyHole transport pathwaysCharge transport pathways
2021
Experimental Verification of Ir 5d Orbital States and Atomic Structures in Highly Active Amorphous Iridium Oxide Catalysts
Kwon G, Chang S, Heo J, Lee K, Kim J, Cho B, Koo T, Kim B, Kim C, Lee J, Bak S, Beyer K, Zhong H, Koch R, Hwang S, Utschig L, Huang X, Hu G, Brudvig G, Tiede D, Kim J. Experimental Verification of Ir 5d Orbital States and Atomic Structures in Highly Active Amorphous Iridium Oxide Catalysts. ACS Catalysis 2021, 11: 10084-10094. DOI: 10.1021/acscatal.1c00818.Peer-Reviewed Original ResearchResonant inelastic x-ray scatteringOxygen evolution reactionIridium oxide catalystsAtomic structureOrbital statesOxide catalystsInelastic x-ray scatteringEV energy lossIr L3 edgeHigh-energy excitationsDensity functional theory calculationsRefined atomic structureCharge transfer kineticsDistribution function measurementsPDF measurementsFunctional theory calculationsDirect experimental verificationRIXS profileInterband transitionsOrbital excitationsCatalytic reactivityL3 edgePair distribution function measurementsIrOx filmsX-ray scattering
2013
3.15 Complex Systems: Photosynthesis
Pokhrel R, Brudvig G. 3.15 Complex Systems: Photosynthesis. 2013, 385-422. DOI: 10.1016/b978-0-08-097774-4.00313-2.Peer-Reviewed Original ResearchOxygen-evolving complexQuantum mechanics/molecular mechanicsPhotosystem IIOO bond formationDensity functional theory calculationsComplete catalytic cycleFunctional theory calculationsProton exit pathwayIron-sulfur centersMetal centerNatural photosynthesisModel complexesCatalytic cycleBond formationMolecular mechanicsFunctional mimicsElectronic characterizationTheory calculationsRole of chlorideOxygenic photosynthesisComplexesDetailed mechanismExit pathwayHydrogenasesPlastocyanin