2024
Zika virus exists in enterocytes and enteroendocrine cells of the Aedes aegypti midgut
Chen T, Raduwan H, Marín-López A, Cui Y, Fikrig E. Zika virus exists in enterocytes and enteroendocrine cells of the Aedes aegypti midgut. IScience 2024, 27: 110353. PMID: 39055935, PMCID: PMC11269924, DOI: 10.1016/j.isci.2024.110353.Peer-Reviewed Original ResearchAedes aegypti midgutEnteroendocrine cellsSingle-cell RNA sequencingIntestinal stem cellsVirus infectionPathogen interactionsExpressed genesRNA sequencingCopy numberTranscriptomic changesFunctional studiesInfected cellsZika virus infectionEnteroendocrineBlood digestionRNA copy numberCellular levelCell processesGenesMidgutPotential targetCell clustersCellsEnterocytesViral infectionmosGILT controls innate immunity and germ cell development in Anopheles gambiae
Arora G, Tang X, Cui Y, Yang J, Chuang Y, Joshi J, Sajid A, Dong Y, Cresswell P, Dimopoulos G, Fikrig E. mosGILT controls innate immunity and germ cell development in Anopheles gambiae. BMC Genomics 2024, 25: 42. PMID: 38191283, PMCID: PMC10775533, DOI: 10.1186/s12864-023-09887-0.Peer-Reviewed Original ResearchConceptsGerm cell developmentAnopheles gambiaeCell developmentOvarian developmentReductase-like proteinWild-type mosquitoesPlasmodium life cycleBiological controlGrowth genesEssential regulatorRNA sequencingA. gambiaeGenesGambiaeAltered expressionImpaired ovarian developmentMosquito vectorsLife cycleMosquitoesImmune activationPlasmodium infectionTranscriptomeOogenesisRegulatorProtein
2014
Role of the Vector in Arbovirus Transmission
Conway MJ, Colpitts TM, Fikrig E. Role of the Vector in Arbovirus Transmission. Annual Review Of Virology 2014, 1: 71-88. PMID: 26958715, PMCID: PMC7809425, DOI: 10.1146/annurev-virology-031413-085513.Peer-Reviewed Original ResearchDisease vectorsDominant lethal geneArbovirus transmissionTransmission of arbovirusesLethal genesMolecular detailsTransgenic mosquitoesHost-seeking behaviorMosquito populationsArboviral diseasesGenomicsProteomicsPrevalence of diseaseNovel strategyGenesArbovirusesMicrobesImmunological controlGrowthVectorDiseaseSignificant diseasePathogensHostRole
2013
Identification of Genes Critical for Resistance to Infection by West Nile Virus Using RNA-Seq Analysis
Qian F, Chung L, Zheng W, Bruno V, Alexander RP, Wang Z, Wang X, Kurscheid S, Zhao H, Fikrig E, Gerstein M, Snyder M, Montgomery RR. Identification of Genes Critical for Resistance to Infection by West Nile Virus Using RNA-Seq Analysis. Viruses 2013, 5: 1664-1681. PMID: 23881275, PMCID: PMC3738954, DOI: 10.3390/v5071664.Peer-Reviewed Original ResearchConceptsCommon gene pathwaysNovel cellular responsesDifferential gene expressionRNA-seq analysisWest Nile virusGene expression analysisPrimary human macrophagesGene isoformsHigh-throughput methodRNA-seqGene pathwaysExpression analysisGenes CriticalKnock-downGene expressionCellular responsesGene changesResistant individualsBiological settingsHuman macrophagesGenesCritical roleAvailable treatmentsHealthy donorsViral infection
2012
Ixodes scapularis JAK-STAT Pathway Regulates Tick Antimicrobial Peptides, Thereby Controlling the Agent of Human Granulocytic Anaplasmosis
Liu L, Dai J, Zhao YO, Narasimhan S, Yang Y, Zhang L, Fikrig E. Ixodes scapularis JAK-STAT Pathway Regulates Tick Antimicrobial Peptides, Thereby Controlling the Agent of Human Granulocytic Anaplasmosis. The Journal Of Infectious Diseases 2012, 206: 1233-1241. PMID: 22859824, PMCID: PMC3448968, DOI: 10.1093/infdis/jis484.Peer-Reviewed Original ResearchConceptsJAK-STAT pathwayTick salivary glandsA. phagocytophilum infectionAntimicrobial peptidesElectrophoretic mobility shift assaysPeptide-encoding genesMobility shift assaysPhagocytophilum infectionHuman granulocytic anaplasmosisGene familyTransducer activatorMammalian hostsRNA interferenceShift assaysTranscription pathwayGene expressionJAK-STATJanus kinaseGranulocytic anaplasmosisSalivary glandsPathwayGenesCritical roleAnaplasma phagocytophilumKey role
2011
Circadian expression of clock genes in mouse macrophages, dendritic cells, and B cells
Silver AC, Arjona A, Hughes ME, Nitabach MN, Fikrig E. Circadian expression of clock genes in mouse macrophages, dendritic cells, and B cells. Brain Behavior And Immunity 2011, 26: 407-413. PMID: 22019350, PMCID: PMC3336152, DOI: 10.1016/j.bbi.2011.10.001.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsARNTL Transcription FactorsB-LymphocytesCircadian RhythmCircadian Rhythm Signaling Peptides and ProteinsCLOCK ProteinsDendritic CellsDNA-Binding ProteinsGene ExpressionMacrophagesMiceNuclear Receptor Subfamily 1, Group D, Member 1Period Circadian ProteinsPhotoperiodSpleenTranscription FactorsConceptsMolecular clock mechanismClock genesClock mechanismGene expressionClock-controlled transcription factorsFunctional molecular clockAspects of physiologyConstant environmental conditionsMolecular clockTranscription factorsCircadian expressionB cellsEnvironmental conditionsLight-dark cycleMouse macrophagesDaily rhythmsGenesExpressionCellsDendritic cellsMurine spleenMammalsMacrophagesSplenic NK cellsImmune cellsAlterations in the Aedes aegypti Transcriptome during Infection with West Nile, Dengue and Yellow Fever Viruses
Colpitts TM, Cox J, Vanlandingham DL, Feitosa FM, Cheng G, Kurscheid S, Wang P, Krishnan MN, Higgs S, Fikrig E. Alterations in the Aedes aegypti Transcriptome during Infection with West Nile, Dengue and Yellow Fever Viruses. PLOS Pathogens 2011, 7: e1002189. PMID: 21909258, PMCID: PMC3164632, DOI: 10.1371/journal.ppat.1002189.Peer-Reviewed Original ResearchConceptsGene expressionDiverse cellular processesPupal cuticle proteinsExpression of genesMosquito gene expressionYellow fever virusFlaviviral infectionsMosquito genesCuticle proteinsCellular processesBioinformatics analysisMosquito cellsExpression profilesMicroarray analysisDDR genesMetabolic processesHuman diseasesGenesTranscriptomic signaturesWest NileFever virusPeptidase activityWNV envelope proteinTranscriptomeAedes aegypti mosquitoes
2009
Toll-Like Receptors 1 and 2 Heterodimers Alter Borrelia burgdorferi Gene Expression in Mice and Ticks
Fikrig E, Narasimhan S, Neelakanta G, Pal U, Chen M, Flavell R. Toll-Like Receptors 1 and 2 Heterodimers Alter Borrelia burgdorferi Gene Expression in Mice and Ticks. The Journal Of Infectious Diseases 2009, 200: 1331-1340. PMID: 19754309, PMCID: PMC2846271, DOI: 10.1086/605950.Peer-Reviewed Original ResearchConceptsGene expressionMicroarray analysisB. burgdorferi gene expressionQuantitative reverse transcription-polymerase chain reaction analysisToll-like receptor 1Reverse transcription-polymerase chain reaction analysisReceptor 1Expression profilesWild-type animalsHost TLRsArthropod vectorsMessenger RNA levelsPolymerase chain reaction analysisChain reaction analysisB. burgdorferi-infected ticksGenesBurgdorferi-infected ticksRNA levelsExpressionMurine hostBorrelia burgdorferiReaction analysisWild-type miceAnimalsHeterodimers
2008
RNA interference screen for human genes associated with West Nile virus infection
Krishnan MN, Ng A, Sukumaran B, Gilfoy FD, Uchil PD, Sultana H, Brass AL, Adametz R, Tsui M, Qian F, Montgomery RR, Lev S, Mason PW, Koski RA, Elledge SJ, Xavier RJ, Agaisse H, Fikrig E. RNA interference screen for human genes associated with West Nile virus infection. Nature 2008, 455: 242-245. PMID: 18690214, PMCID: PMC3136529, DOI: 10.1038/nature07207.Peer-Reviewed Original ResearchMeSH KeywordsComputational BiologyDengue VirusEndoplasmic ReticulumGene Expression ProfilingGenome, HumanHeLa CellsHIVHumansImmunityMonocarboxylic Acid TransportersMuscle ProteinsProtein BindingRNA InterferenceUbiquitinationUbiquitin-Protein LigasesVesiculovirusVirus ReplicationWest Nile FeverWest Nile virusA Differential Role for BB0365 in the Persistence of Borrelia burgdorferi in Mice and Ticks
Pal U, Dai J, Li X, Neelakanta G, Luo P, Kumar M, Wang P, Yang X, Anderson JF, Fikrig E. A Differential Role for BB0365 in the Persistence of Borrelia burgdorferi in Mice and Ticks. The Journal Of Infectious Diseases 2008, 197: 148-155. PMID: 18171298, DOI: 10.1086/523764.Peer-Reviewed Original ResearchConceptsVertebrate hostsWild-type B. burgdorferiArthropod vectorsB. burgdorferi persistenceB. burgdorferi transcriptomeDiverse murine tissuesSpirochete life cycleLife cycleB. burgdorferi B31Lyme disease agentGene productsMurine tissuesGenesWild rodentsDisease agentsDifferential rolesFeeding ticksB. burgdorferiInfectious isolatesHostBorrelia burgdorferiTicksTranscriptomePersistence of BorreliaMutants
2007
Tick–host–pathogen interactions in Lyme borreliosis
Hovius JW, van Dam AP, Fikrig E. Tick–host–pathogen interactions in Lyme borreliosis. Trends In Parasitology 2007, 23: 434-438. PMID: 17656156, DOI: 10.1016/j.pt.2007.07.001.Peer-Reviewed Original ResearchConceptsVertebrate hostsB. burgdorferi survivalB. burgdorferi genesEnzootic life cycleSpirochete survivalGene productsB. burgdorferiArthropod vectorsGenesVector moleculesLife cycleDifferent environmentsHostBorrelia burgdorferiIxodes ticksTROSPATicksSpirochetal agentBurgdorferiLyme borreliosisMicrobesSalp15ExpressionSurvival
2006
An Ixodes scapularis protein required for survival of Anaplasma phagocytophilum in tick salivary glands
Sukumaran B, Narasimhan S, Anderson JF, DePonte K, Marcantonio N, Krishnan MN, Fish D, Telford SR, Kantor FS, Fikrig E. An Ixodes scapularis protein required for survival of Anaplasma phagocytophilum in tick salivary glands. Journal Of Experimental Medicine 2006, 203: 1507-1517. PMID: 16717118, PMCID: PMC2118316, DOI: 10.1084/jem.20060208.Peer-Reviewed Original ResearchConceptsA. phagocytophilum-infected miceRNA interference-mediated silencingA. phagocytophilumTick salivary proteinsI. scapularis salivary glandsRickettsia-like pathogensTick salivary glandsMammalian hostsGenus RickettsiaAnaplasma phagocytophilumGene expressionSalivary glandsIntracellular organismsArthropodsSalivary proteinsPathogensProteinPhagocytophilumExpressionTicksHuman anaplasmosisSilencingGenesOrganismsAnaplasma
2005
Early Transcriptional Response of Human Neutrophils to Anaplasma phagocytophilum Infection
Sukumaran B, Carlyon JA, Cai JL, Berliner N, Fikrig E. Early Transcriptional Response of Human Neutrophils to Anaplasma phagocytophilum Infection. Infection And Immunity 2005, 73: 8089-8099. PMID: 16299303, PMCID: PMC1307096, DOI: 10.1128/iai.73.12.8089-8099.2005.Peer-Reviewed Original ResearchConceptsEarly transcriptional responseTranscriptional responseGene expressionHost cell gene expressionComprehensive DNA microarray analysisA. phagocytophilum infectionDNA microarray analysisObligate intracellular pathogensCell gene expressionCFLAR geneTNFSF10 geneA. phagocytophilum-infected neutrophilsCytoskeletal remodelingVesicular transportTranscriptional profilesHost pathwaysMicroarray analysisAntiapoptotic genesPromyelocytic cell lineDifferential expressionPhagocytophilum infectionHost cellsGenesHuman neutrophilsIntracellular pathogensModulation of NB4 promyelocytic leukemic cell machinery by Anaplasma phagocytophilum
Pedra JH, Sukumaran B, Carlyon JA, Berliner N, Fikrig E. Modulation of NB4 promyelocytic leukemic cell machinery by Anaplasma phagocytophilum. Genomics 2005, 86: 365-377. PMID: 16005178, DOI: 10.1016/j.ygeno.2005.05.008.Peer-Reviewed Original ResearchConceptsCell machineryA. phagocytophilum infectionTwo-dimensional differential gel electrophoresisSignal transduction genesNB4 promyelocytic leukemic cellsHigh-density oligoarraysDifferential gel electrophoresisPhagocytophilum infectionIron metabolism genesNF-kappaB genesTransduction genesObligate intracellular bacteriumApoptotic programTranscription factorsNegative obligate intracellular bacteriumCell adhesion moleculeAnaplasma phagocytophilumAntiapoptotic genesGenesIntracellular bacteriumNB4 cellsAffymetrix dataGel electrophoresisTranscriptionPromyelocytic leukemic cellsAnaplasma phagocytophilum Modulates gp91phox Gene Expression through Altered Interferon Regulatory Factor 1 and PU.1 Levels and Binding of CCAAT Displacement Protein
Thomas V, Samanta S, Wu C, Berliner N, Fikrig E. Anaplasma phagocytophilum Modulates gp91phox Gene Expression through Altered Interferon Regulatory Factor 1 and PU.1 Levels and Binding of CCAAT Displacement Protein. Infection And Immunity 2005, 73: 208-218. PMID: 15618156, PMCID: PMC538944, DOI: 10.1128/iai.73.1.208-218.2005.Peer-Reviewed Original ResearchMeSH KeywordsAnaplasma phagocytophilumDNA-Binding ProteinsGene Expression RegulationHL-60 CellsHomeodomain ProteinsHumansInterferon Regulatory Factor-1Membrane GlycoproteinsNADPH Oxidase 2NADPH OxidasesNuclear ProteinsPhosphoproteinsPhosphorylationPromoter Regions, GeneticProto-Oncogene ProteinsRepressor ProteinsSTAT1 Transcription FactorTrans-ActivatorsTranscription FactorsTranscription, GeneticConceptsCCAAT displacement proteinRegulatory factor 1IRF-1IRF-1 promoterRegulation of genesA. phagocytophilum-infected cellsFirst molecular mechanismFactor 1Interferon regulatory factor 1IFN-gamma signalingActivator proteinGene transcriptionAnaplasma phagocytophilumTranscriptional inhibitionGene expressionMolecular mechanismsNuclear extractsGamma interferon stimulationPhosphorylated STAT1Interferon stimulationGenesA. phagocytophilum infectionProteinProtein expressionReduced expression
2003
Adaptation of Borrelia burgdorferi in the tick and the mammalian host
Anguita J, Hedrick MN, Fikrig E. Adaptation of Borrelia burgdorferi in the tick and the mammalian host. FEMS Microbiology Reviews 2003, 27: 493-504. PMID: 14550942, DOI: 10.1016/s0168-6445(03)00036-6.Peer-Reviewed Original ResearchConceptsMammalian hostsGene expressionRegulation of genesAdaptation of BorreliaGene productsDifferent environmentsArthropod vectorsEnzootic cycleCurrent knowledgeLife cycleHostExpressionCausative agentB. burgdorferiBorrelia burgdorferiGenesSpirochetesTicksBurgdorferiMicroorganismsGreater abilityRegulationLyme diseaseThorough understandingFunction
2002
Differential Expression of the p44 Gene Family in the Agent of Human Granulocytic Ehrlichiosis
IJdo JW, Wu C, Telford SR, Fikrig E. Differential Expression of the p44 Gene Family in the Agent of Human Granulocytic Ehrlichiosis. Infection And Immunity 2002, 70: 5295-5298. PMID: 12183586, PMCID: PMC128253, DOI: 10.1128/iai.70.9.5295-5298.2002.Peer-Reviewed Original ResearchConceptsP44 geneDifferential expressionHuman granulocytic ehrlichiosisGene familyAntigenic variationHGE bacteriaTransmission feedingGranulocytic ehrlichiosisGenesHypervariable regionInfected C3H miceP44 expressionTick transmissionExpressionSCID miceC3H miceHGE infectionMurine modelInfected ticksSalivary glandsNymphal ticksMiceTicksEhrlichiosisBacteriaMolecular Adaptation of Borrelia burgdorferi in the Murine Host
Liang FT, Nelson FK, Fikrig E. Molecular Adaptation of Borrelia burgdorferi in the Murine Host. Journal Of Experimental Medicine 2002, 196: 275-280. PMID: 12119353, PMCID: PMC2193918, DOI: 10.1084/jem.20020770.Peer-Reviewed Original ResearchConceptsLipoprotein geneMolecular adaptationsHost immune selection pressureAnalysis of expressionNovel adaptation mechanismSteps of adaptationSelection pressureLyme disease spirocheteB. burgdorferiMurine hostGenesHost tissuesImmune selection pressureAdaptation mechanismsChronic infectionMurine infectionCritical stepHostBorrelia burgdorferiInfectionAdaptationSpirochetesBurgdorferiInitial inoculumPathogensDNA Microarray Assessment of Putative Borrelia burgdorferi Lipoprotein Genes
Liang FT, Nelson FK, Fikrig E. DNA Microarray Assessment of Putative Borrelia burgdorferi Lipoprotein Genes. Infection And Immunity 2002, 70: 3300-3303. PMID: 12011030, PMCID: PMC128019, DOI: 10.1128/iai.70.6.3300-3303.2002.Peer-Reviewed Original ResearchExamination of the Borrelia burgdorferi Transcriptome in Ixodes scapularis during Feeding
Narasimhan S, Santiago F, Koski RA, Brei B, Anderson JF, Fish D, Fikrig E. Examination of the Borrelia burgdorferi Transcriptome in Ixodes scapularis during Feeding. Journal Of Bacteriology 2002, 184: 3122-3125. PMID: 12003955, PMCID: PMC135063, DOI: 10.1128/jb.184.11.3122-3125.2002.Peer-Reviewed Original ResearchConceptsBorrelia burgdorferi gene expressionB. burgdorferi genesPeriplasmic proteinsSignal transductionChromosomal genesPutative lipoproteinSubstrate transportGene expressionDifferential expressionGenesEnergy metabolismIxodes scapularis ticksGlobal analysisIxodes scapularisScapularis ticksExpressionTranscriptomeTransductionTicksProteinFeedingMetabolismScapularis