2012
Chitosan, Gelatin and Poly(L-Lysine) Polyelectrolyte-Based Scaffolds and Films for Neural Tissue Engineering
Martín-López E, Alonso FR, Nieto-Díaz M, Nieto-Sampedro M. Chitosan, Gelatin and Poly(L-Lysine) Polyelectrolyte-Based Scaffolds and Films for Neural Tissue Engineering. Journal Of Biomaterials Science Polymer Edition 2012, 23: 207-232. PMID: 21192838, DOI: 10.1163/092050610x546426.Peer-Reviewed Original ResearchConceptsNeural tissue engineeringTissue engineeringG filmsSmall pore sizeThermal resistancePore sizeSuitable materialBiomaterial implantsFilmsBest mixturePromising candidateEngineeringDorsal root gangliaDifferent physicochemical approachesDistinct electrostatic interactionsTraumatic nerve damageSpindle cell morphologyGel morphologyGlial cell growthNerve damage
2010
Differential Adhesiveness and Neurite-promoting Activity for Neural Cells of Chitosan, Gelatin, and Poly-l-Lysine Films
Martín-López E, Nieto-Díaz M, Nieto-Sampedro M. Differential Adhesiveness and Neurite-promoting Activity for Neural Cells of Chitosan, Gelatin, and Poly-l-Lysine Films. Journal Of Biomaterials Applications 2010, 26: 791-809. PMID: 20876636, DOI: 10.1177/0885328210379928.Peer-Reviewed Original ResearchConceptsG filmsDorsal root gangliaTissue engineeringExcellent adhesive propertiesComposite filmsGood adhesionGood biomaterialFilmsPC12 cellsNGF-differentiated PC12 cellsC6 glioma cellsAdhesive propertiesRoot gangliaGlial cellsCerebral tissueHippocampal neuronsNerve repairMixture of CHGlioma cellsC6 lineTissue regenerationNeural cellsLysine filmsNeuronsEngineering