2006
ph‐Triggered Transport of Molecules into Cells by Transmembrane Helix Insertion
Engelman D, Andreev O, Reshetnyak Y. ph‐Triggered Transport of Molecules into Cells by Transmembrane Helix Insertion. The FASEB Journal 2006, 20: a457-a457. DOI: 10.1096/fasebj.20.4.a457-b.Peer-Reviewed Original ResearchC-terminusTransmembrane helix insertionActin cytoskeletonHelix insertionPlasma membraneTransbilayer helicesTarget cellsCell contractilityBiophysical measurementsCancer cellsDisulfide linksCytoplasmCellsWater-soluble peptidesDiseased tissuesPeptidesMembraneAcidic pHCytoskeletonFluorescent dyeHelixPhalloidinAcidic environmentMoleculesInjection of molecules
2001
The Cα—H⋅⋅⋅O hydrogen bond: A determinant of stability and specificity in transmembrane helix interactions
Senes A, Ubarretxena-Belandia I, Engelman D. The Cα—H⋅⋅⋅O hydrogen bond: A determinant of stability and specificity in transmembrane helix interactions. Proceedings Of The National Academy Of Sciences Of The United States Of America 2001, 98: 9056-9061. PMID: 11481472, PMCID: PMC55372, DOI: 10.1073/pnas.161280798.Peer-Reviewed Original ResearchConceptsMembrane protein structuresMembrane protein foldingTransmembrane helix associationTransmembrane helix interactionsHelix-helix interactionsTransmembrane helicesProtein foldingPacking interfaceHelix associationHelix interactionsProtein structureDeterminants of stabilityCalphaStructural motifsHelixSerineFoldingMotifHydrogen bondsImportant determinantInteractionGlycophorinSpecificityCαDeterminantsPolar residues drive association of polyleucine transmembrane helices
Zhou F, Merianos H, Brunger A, Engelman D. Polar residues drive association of polyleucine transmembrane helices. Proceedings Of The National Academy Of Sciences Of The United States Of America 2001, 98: 2250-2255. PMID: 11226225, PMCID: PMC30124, DOI: 10.1073/pnas.041593698.Peer-Reviewed Original ResearchConceptsPolar residuesPolyleucine sequenceHelix associationTransmembrane helix associationInterhelical hydrogen bondingTransmembrane protein functionTransmembrane helicesForm homoProtein functionTransmembrane proteinDrive associationMembrane proteinsDetergent micellesAsparagine residuesGeneral structural featuresBiological membranesResiduesOligomerization specificityProteinSequenceHelixStructural flexibilitySuch interactionsStructural featuresHeterooligomers
2000
HELICAL MEMBRANE PROTEIN FOLDING, STABILITY, AND EVOLUTION
Popot J, Engelman D. HELICAL MEMBRANE PROTEIN FOLDING, STABILITY, AND EVOLUTION. Annual Review Of Biochemistry 2000, 69: 881-922. PMID: 10966478, DOI: 10.1146/annurev.biochem.69.1.881.Peer-Reviewed Original ResearchInterhelical hydrogen bonding drives strong interactions in membrane proteins
Xiao Zhou F, Cocco M, Russ W, Brunger A, Engelman D. Interhelical hydrogen bonding drives strong interactions in membrane proteins. Nature Structural & Molecular Biology 2000, 7: 154-160. PMID: 10655619, DOI: 10.1038/72430.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsAmino Acid SequenceAsparagineCell MembraneChloramphenicol O-AcetyltransferaseCircular DichroismDetergentsDimerizationDNA-Binding ProteinsElectrophoresis, Polyacrylamide GelFungal ProteinsGlycophorinsHydrogen BondingLeucine ZippersMagnetic Resonance SpectroscopyMembrane ProteinsMicellesMicrococcal NucleaseMolecular Sequence DataPeptidesProtein ConformationProtein KinasesProtein Structure, SecondaryRecombinant ProteinsSaccharomyces cerevisiae ProteinsConceptsMembrane proteinsHelix associationTransmembrane α-helicesIntegral membrane proteinsInterhelical hydrogen bondingModel transmembrane helixTransmembrane helicesMembrane helicesGCN4 leucine zipperLeucine zipperPolar residuesSoluble proteinHydrophobic leucineΑ-helixBiological membranesProteinHelixNon-specific interactionsValine (HAV) sequenceMembraneZipperFoldingMotifAsparagineResidues
1997
A Biophysical Study of Integral Membrane Protein Folding †
Hunt J, Earnest T, Bousché O, Kalghatgi K, Reilly K, Horváth C, Rothschild K, Engelman D. A Biophysical Study of Integral Membrane Protein Folding †. Biochemistry 1997, 36: 15156-15176. PMID: 9398244, DOI: 10.1021/bi970146j.Peer-Reviewed Original ResearchConceptsAlpha-helical integral membrane proteinsIntegral membrane proteinsMembrane proteinsIntegral membrane protein foldingMembrane protein foldingNon-native conformationsStable secondary structureCellular chaperonesBiophysical dissectionBeta-sheet structureProtein foldingIndividual polypeptidesBiophysical studiesStructure of bacteriorhodopsinTertiary structureSecondary structureReconstitution protocolsG helicesPolypeptideF helixProteinPhospholipid vesiclesHelixFoldingBacteriorhodopsinThe effect of point mutations on the free energy of transmembrane α-helix dimerization11Edited by M. F. Moody
Fleming K, Ackerman A, Engelman D. The effect of point mutations on the free energy of transmembrane α-helix dimerization11Edited by M. F. Moody. Journal Of Molecular Biology 1997, 272: 266-275. PMID: 9299353, DOI: 10.1006/jmbi.1997.1236.Peer-Reviewed Original ResearchConceptsSodium dodecylsulfateVan der Waals interactionsAnalytical ultracentrifugationDer Waals interactionsFree energyMolecular association eventsEnergy of dimerizationOctyl etherWaals interactionsMolecular modelingRelative energy scaleDetergent environmentReversible associationEnergy differenceSedimentation equilibriumMonomersTransmembrane α-helicesNon-denaturing detergent solutionsDimer formationΑ-helixDimer stateAssociation eventsDetergent solutionDissociationHelixA Transmembrane Helix Dimer: Structure and Implications
MacKenzie K, Prestegard J, Engelman D. A Transmembrane Helix Dimer: Structure and Implications. Science 1997, 276: 131-133. PMID: 9082985, DOI: 10.1126/science.276.5309.131.Peer-Reviewed Original ResearchConceptsMembrane-spanning alpha helicesSolution nuclear magnetic resonance spectroscopyDimeric transmembrane domainNuclear magnetic resonance spectroscopyTransmembrane helix dimerVan der Waals interactionsDer Waals interactionsAqueous detergent micellesIntermonomer hydrogen bondsTransmembrane helicesTransmembrane domainMagnetic resonance spectroscopyThree-dimensional structureDetergent micellesHelix dimerHydrogen bondsWaals interactionsAlpha-helixResonance spectroscopyGlycophorin ASpecific associationHelixSequence dependenceMicellesSpectroscopy
1996
Mapping the lipid-exposed surfaces of membrane proteins
Arkin I, MacKenzie K, Fisher L, Aimoto S, Engelman D, Smith S. Mapping the lipid-exposed surfaces of membrane proteins. Nature Structural & Molecular Biology 1996, 3: 240-243. PMID: 8605625, DOI: 10.1038/nsb0396-240.Peer-Reviewed Original ResearchConceptsMembrane proteinsLong transmembrane helixLipid-exposed surfaceThree-dimensional foldHigh-resolution structuresRelative rotational orientationTransmembrane helicesTransmembrane segmentsThird cysteineCysteine residuesLipid environmentHelix interfacePentameric complexProteinLipid interfaceStable complexesHelixResiduesUndergoes exchangeSulphydryl groupsPhospholambanComplexesInternal faceCysteineRotational orientation
1994
Specificity and promiscuity in membrane helix interactions
Lemmon M, Engelman D. Specificity and promiscuity in membrane helix interactions. FEBS Letters 1994, 346: 17-20. PMID: 8206151, DOI: 10.1016/0014-5793(94)00467-6.Peer-Reviewed Original ResearchSpecificity and promiscuity in membrane helix interactions
Lemmon M, Engelman D. Specificity and promiscuity in membrane helix interactions. Quarterly Reviews Of Biophysics 1994, 27: 157-218. PMID: 7984776, DOI: 10.1017/s0033583500004522.Peer-Reviewed Original ResearchConceptsIntegral membrane proteinsTransmembrane α-helicesMembrane proteinsΑ-helixMembrane protein foldingMembrane-spanning portionTransmembrane helix associationHelix-helix interactionsParticular helicesProtein foldingHelix associationHelix interactionsProsthetic groupLipid bilayersCharge-charge interactionsStereochemical fitFoldingProteinAccessible statesSpecificityOligomerizationInteractionPromiscuityHelixAssembly
1992
Helix-helix interactions inside lipid bilayers
Lemmon M, Engelman D. Helix-helix interactions inside lipid bilayers. Current Opinion In Structural Biology 1992, 2: 511-518. PMCID: PMC7133266, DOI: 10.1016/0959-440x(92)90080-q.Peer-Reviewed Original ResearchTransmembrane α-helicesHelix-helix interactionsΑ-helixSingle transmembrane α-helixMechanism of transmembraneIntegral membrane proteinsNumber of proteinsMembrane-bound receptorsTransmembrane helicesInterhelical salt bridgesMembrane proteinsSoluble proteinSuch oligomerizationEndoplasmic reticulumHydrophobic anchorSuch helicesProteinLipid bilayersSalt bridgePacking interactionsOligomerizationSpecific interactionsCrystallographic studiesHelixGolgiBacteriorhodopsin can be refolded from two independently stable transmembrane helices and the complementary five-helix fragment.
Kahn T, Engelman D. Bacteriorhodopsin can be refolded from two independently stable transmembrane helices and the complementary five-helix fragment. Biochemistry 1992, 31: 6144-51. PMID: 1627558, DOI: 10.1021/bi00141a027.Peer-Reviewed Original ResearchConceptsStable transmembrane helixSecond helical segmentX-ray diffractionCovalent connectionAbsorption spectroscopyTwo-dimensional crystalsIndependent folding domainsBacteriorhodopsinHelical segmentsNative structureHelixSpectroscopyPeptidesDiffractionTransmembrane helicesMoleculesCrystalsFragmentsMaterialsStructure
1991
Small-angle X-ray scattering studies of calmodulin mutants with deletions in the linker region of the central helix indicate that the linker region retains a predominantly alpha-helical conformation.
Kataoka M, Head J, Persechini A, Kretsinger R, Engelman D. Small-angle X-ray scattering studies of calmodulin mutants with deletions in the linker region of the central helix indicate that the linker region retains a predominantly alpha-helical conformation. Biochemistry 1991, 30: 1188-92. PMID: 1991098, DOI: 10.1021/bi00219a004.Peer-Reviewed Original ResearchConceptsLinker regionCentral helixCalcium-dependent conformational changeWild-type proteinCentral linker regionSmall-angle X-rayAlpha-helical conformationGlu-84Calmodulin mutantsMutant formsGlu-83Wild typeMutantsNative proteinConformational changesCalmodulinProteinSer-81DeletionPresence of Ca2Binding of melittinSignificant size changesGlobular conformationRadius of gyrationHelix
1990
MEMBRANE PROTEIN MODELS: POSSIBILITIES AND PROBABILITIES
POPOT J, ENGELMAN D. MEMBRANE PROTEIN MODELS: POSSIBILITIES AND PROBABILITIES. 1990, 147-151. DOI: 10.1016/b978-1-85166-512-9.50019-4.Peer-Reviewed Original Research
1988
Bacteriorhodopsin in and out of Shape: Experimental Evidence in Favor of a Two-Stage Mechanism for Integral Membrane Protein Folding
Popot J, Engelman D. Bacteriorhodopsin in and out of Shape: Experimental Evidence in Favor of a Two-Stage Mechanism for Integral Membrane Protein Folding. Jerusalem Symposia 1988, 21: 381-398. DOI: 10.1007/978-94-009-3075-9_25.Peer-Reviewed Original ResearchIntegral membrane proteinsMembrane proteinsHelical integral membrane proteinsIntegral membrane protein foldingIntegral membrane protein bacteriorhodopsinMembrane protein foldingTransmembrane α-helicesMembrane protein bacteriorhodopsinTransmembrane helicesProtein foldingRenaturation experimentsVesicle fusionExtensive rearrangementNative proteinPolypeptide chainΑ-helixSequence segmentsLipid vesiclesProtein bacteriorhodopsinProteolytic fragmentsProteinFoldingHelixLipid phaseBacteriorhodopsin
1982
[11] The identification of helical segments in the polypeptide chain of bacteriorhodopsin
Engelman D, Goldman A, Steitz T. [11] The identification of helical segments in the polypeptide chain of bacteriorhodopsin. Methods In Enzymology 1982, 88: 81-88. DOI: 10.1016/0076-6879(82)88014-2.Peer-Reviewed Original ResearchLysine amino groupsAqueous surfaceAqueous environmentAmino groupsModification of interestPurple membrane fragmentsElectron microscopyReagentsHelical segmentsMoleculesBacteriorhodopsin structureHelical regionSingle lysineSoluble enzymePolypeptide chainCyanogen bromide fragmentsDerivitizationProteolytic enzymesKind of modificationHelixMembraneMembrane fragmentsComplexesAminoModification
1981
The spontaneous insertion of proteins into and across membranes: The helical hairpin hypothesis
Engelman D, Steitz T. The spontaneous insertion of proteins into and across membranes: The helical hairpin hypothesis. Cell 1981, 23: 411-422. PMID: 7471207, DOI: 10.1016/0092-8674(81)90136-7.Peer-Reviewed Original ResearchConceptsMembrane proteinsSecreted proteinsIntegral membrane proteinsHydrophobic leader peptideSecretion of proteinsHelical hairpinSpecific membrane receptorsPolypeptide sequenceSecond helixLeader peptideTransport proteinsLipid environmentTerminal helixN-terminusSpontaneous insertionMembrane receptorsHairpin structurePolypeptide structureProteinHelixHairpinHydrophobic interiorOnly alphaNonpolar sequencesHydrophobic portion
1980
Bacteriorhodopsin is an inside-out protein.
Engelman D, Zaccai G. Bacteriorhodopsin is an inside-out protein. Proceedings Of The National Academy Of Sciences Of The United States Of America 1980, 77: 5894-5898. PMID: 6934521, PMCID: PMC350178, DOI: 10.1073/pnas.77.10.5894.Peer-Reviewed Original ResearchConceptsAmino acid sequenceSingle bacteriorhodopsin moleculePurple membrane structureAcid sequenceAlpha-helixBacteriorhodopsin moleculesSoluble proteinBiosynthetic incorporationBacteriorhodopsin structureAmino acidsHalobacterium halobiumProteinMembrane structureValineMolecular interiorPurple membranePhenylalanineDifference Fourier techniquesLipid regionsHelixHalobiumMoleculesSequenceBacteriorhodopsinMembrane