2008
Characterization and evolutionary history of an archaeal kinase involved in selenocysteinyl-tRNA formation
Sherrer RL, O’Donoghue P, Söll D. Characterization and evolutionary history of an archaeal kinase involved in selenocysteinyl-tRNA formation. Nucleic Acids Research 2008, 36: 1247-1259. PMID: 18174226, PMCID: PMC2275090, DOI: 10.1093/nar/gkm1134.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphatasesAdenosine TriphosphateAmino Acid SequenceArchaeal ProteinsBinding SitesEvolution, MolecularKineticsMethanococcalesModels, MolecularMutationPhosphotransferasesPhylogenyProtein Structure, TertiaryRNA, Transfer, Amino AcylSequence AlignmentSingle-Strand Specific DNA and RNA EndonucleasesSubstrate SpecificityConceptsATPase active sitePhosphate-binding loopInduced fit mechanismRxxxR motifEvolutionary historyWalker BKinase familyPhylogenetic analysisSep-tRNARelated kinasesPSTKBiochemical characterizationSynthase convertsFit mechanismKinaseATPase activityPlasmodium speciesMotifActive siteSerHigh affinityDecreased activityArchaeaSepSecSSer18
1984
In vivo and in vitro transcription of the Escherichia coli glutaminyl-tRNA synthetase gene.
Cheung A, Söll D. In vivo and in vitro transcription of the Escherichia coli glutaminyl-tRNA synthetase gene. Journal Of Biological Chemistry 1984, 259: 9953-9958. PMID: 6086662, DOI: 10.1016/s0021-9258(17)42791-8.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesBase SequenceCloning, MolecularDNA Restriction EnzymesDNA, BacterialEndonucleasesEscherichia coliGenes, RegulatorGlutamate-tRNA LigaseMutationNucleic Acid ConformationRNA, MessengerSingle-Strand Specific DNA and RNA EndonucleasesTranscription, GeneticConceptsGlutaminyl-tRNA synthetaseGlutaminyl-tRNA synthetase geneTranslation initiation codon AUGInitiation codon AUGPresence of tRNATermination codon UAAGlnS geneTerminator structureTranscription initiationSynthetase geneTranscription initiatesCodons UAARegulatory signalsCodon AUGTermination sitesTranscription productsSequence analysisStructure upstreamStructural regionsTranscriptionGenesTranscriptsSynthetaseMRNAGln
1983
Stable transcription complex formation of eukaryotic tRNA genes is dependent on a limited separation of the two intragenic control regions.
Dingermann T, Sharp S, Schaack J, Söll D. Stable transcription complex formation of eukaryotic tRNA genes is dependent on a limited separation of the two intragenic control regions. Journal Of Biological Chemistry 1983, 258: 10395-10402. PMID: 6309803, DOI: 10.1016/s0021-9258(17)44470-x.Peer-Reviewed Original ResearchMeSH KeywordsBase SequenceDNADNA Transposable ElementsDrosophila melanogasterEndonucleasesRNA, TransferRNA, Transfer, Amino AcylSingle-Strand Specific DNA and RNA EndonucleasesTemplates, GeneticTranscription, GeneticConceptsIntragenic control regionControl regionTRNA genesTRNAArg geneDrosophila Kc cell extractStable transcription complex formationTranscription efficiencyDrosophila tRNAArg geneT-control regionMutant tRNA genesEukaryotic tRNA genesTranscription complex formationStable transcription complexesWild-type geneXhoI linkerTranscriptional roleTranscription initiationTranscription complexDNA regionsType genesTranscription factorsGene transcriptionTermination sitesDNA fragmentsCell extracts
1982
E. coli initiator tRNA analogs with different nucleotides in the discriminator base position
Uemura H, Imai M, Ohtsuka E, Ikehara M, Söll D. E. coli initiator tRNA analogs with different nucleotides in the discriminator base position. Nucleic Acids Research 1982, 10: 6531-6539. PMID: 6294608, PMCID: PMC326942, DOI: 10.1093/nar/10.20.6531.Peer-Reviewed Original ResearchBase SequenceEndonucleasesEscherichia coliIndicators and ReagentsOligonucleotidesOligoribonucleotidesOxidation-ReductionRNA Ligase (ATP)RNA, Transfer, Amino AcylSingle-Strand Specific DNA and RNA Endonucleases