2009
The Human SepSecS-tRNASec Complex Reveals the Mechanism of Selenocysteine Formation
Palioura S, Sherrer RL, Steitz TA, Söll D, Simonović M. The Human SepSecS-tRNASec Complex Reveals the Mechanism of Selenocysteine Formation. Science 2009, 325: 321-325. PMID: 19608919, PMCID: PMC2857584, DOI: 10.1126/science.1173755.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesBase SequenceBiocatalysisCatalytic DomainCrystallography, X-RayHumansHydrogen BondingModels, MolecularMolecular Sequence DataNucleic Acid ConformationPhosphatesPhosphoserineProtein ConformationProtein MultimerizationProtein Structure, SecondaryRNA, Transfer, Amino Acid-SpecificRNA, Transfer, Amino AcylSelenocysteineConceptsTransfer RNASelenocysteine formationSelenocysteinyl-tRNA synthaseCognate transfer RNAEnzyme active siteTRNA bindingActive siteConformational changesEnzyme assaysAmino acidsFree phosphoserinePhosphoserineSepSecSFinal stepSelenocysteineBiosynthesisComplexesRNAMechanismBindsCrystal structureSynthaseBindingFormationAssays
2008
Pyrrolysyl-tRNA synthetase–tRNAPyl structure reveals the molecular basis of orthogonality
Nozawa K, O’Donoghue P, Gundllapalli S, Araiso Y, Ishitani R, Umehara T, Söll D, Nureki O. Pyrrolysyl-tRNA synthetase–tRNAPyl structure reveals the molecular basis of orthogonality. Nature 2008, 457: 1163-1167. PMID: 19118381, PMCID: PMC2648862, DOI: 10.1038/nature07611.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesAminoacylationCrystallography, X-RayDesulfitobacteriumEscherichia coliLysineMethanosarcina barkeriModels, MolecularRNA, Transfer, Amino Acid-SpecificStructural Homology, ProteinConceptsAmino acidsMolecular basisLast universal common ancestorUniversal common ancestorUAG stop codonProteinogenic amino acidsCommon ancestorSuppressor tRNAStop codonDesulfitobacterium hafnienseStandard amino acidsTRNADistinct interactionsProteinPyrrolysinePylRSSelenocysteineAncestorCodonMachineryAcidVivoPairs
2000
The Adaptor hypothesis revisited
Ibba M, Becker H, Stathopoulos C, Tumbula D, Söll D, Ibba M, Becker H, Stathopoulos C, Tumbula D, Söll D. The Adaptor hypothesis revisited. Trends In Biochemical Sciences 2000, 25: 311-316. PMID: 10871880, DOI: 10.1016/s0968-0004(00)01600-5.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesArchaeal ProteinsEvolution, MolecularLysine-tRNA LigaseModels, GeneticPhylogenyProtein BiosynthesisRNA, Transfer, Amino Acid-SpecificSubstrate Specificity
1990
Sequence of a tRNA Gly from Streptomyces coelicolor
Rokem J, Schön A, Söll D. Sequence of a tRNA Gly from Streptomyces coelicolor. Nucleic Acids Research 1990, 18: 3988-3988. PMID: 2374719, PMCID: PMC331104, DOI: 10.1093/nar/18.13.3988.Peer-Reviewed Original ResearchBase SequenceMolecular Sequence DataNucleic Acid ConformationRNA, Transfer, Amino Acid-SpecificRNA, Transfer, GlySequence Homology, Nucleic AcidStreptomycesEnzymatic addition of guanylate to histidine transfer RNA
Williams J, Cooley L, Söll D. Enzymatic addition of guanylate to histidine transfer RNA. Methods In Enzymology 1990, 181: 451-462. PMID: 2166216, DOI: 10.1016/0076-6879(90)81143-i.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell LineChromatography, AffinityChromatography, DEAE-CelluloseChromatography, Ion ExchangeDrosophilaElectrophoresis, Polyacrylamide GelGuanosine TriphosphateKineticsNucleotidyltransferasesPhosphorus RadioisotopesRadioisotope Dilution TechniqueRNA, Transfer, Amino Acid-SpecificRNA, Transfer, HisSaccharomyces cerevisiaeSubstrate SpecificityConceptsHistidine tRNATransfer RNABacteriophage T5Yeast enzymeEnzyme migratesUridine residuesExtra nucleotidesLigase mechanismAdditional nucleotidesEnzymatic additionGel filtration chromatographyEnzyme intermediateTRNAAbsolute requirementEnzymeMolecular weightNucleotidesUltrogel AcA 34Filtration chromatographyATPDrosophilaAcA 34Molecular weight markersYeastTitration experiments
1989
Structure of E. coli Glutaminyl-tRNA Synthetase Complexed with tRNAGln and ATP at 2.8 Å Resolution
Rould M, Perona J, Söll D, Steitz T. Structure of E. coli Glutaminyl-tRNA Synthetase Complexed with tRNAGln and ATP at 2.8 Å Resolution. Science 1989, 246: 1135-1142. PMID: 2479982, DOI: 10.1126/science.2479982.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAmino Acyl-tRNA SynthetasesAnticodonBase CompositionBase SequenceBinding SitesBiological EvolutionChemical PhenomenaChemistry, PhysicalCrystallizationEscherichia coliMolecular Sequence DataMolecular StructureNucleic Acid ConformationRNA, BacterialRNA, FungalRNA, Transfer, Amino Acid-SpecificRNA, Transfer, GlnX-Ray DiffractionThe selenocysteine-inserting opal suppressor serine tRNA from E.coli is highly unusual in structure and modification
Schön A, Böck A, Ott G, Sprinzl M, Söll D. The selenocysteine-inserting opal suppressor serine tRNA from E.coli is highly unusual in structure and modification. Nucleic Acids Research 1989, 17: 7159-7165. PMID: 2529478, PMCID: PMC334795, DOI: 10.1093/nar/17.18.7159.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesBase SequenceChromatography, High Pressure LiquidCodonCysteineEscherichia coliGenes, BacterialMolecular Sequence DataNucleic Acid ConformationRNA, Transfer, Amino Acid-SpecificRNA, Transfer, SerSeleniumSelenocysteineStructure-Activity RelationshipSuppression, Geneticdelta-Aminolevulinic acid biosynthesis in Escherichia coli and Bacillus subtilis involves formation of glutamyl-tRNA.
O'Neill G, Chen M, Söll D. delta-Aminolevulinic acid biosynthesis in Escherichia coli and Bacillus subtilis involves formation of glutamyl-tRNA. FEMS Microbiology Letters 1989, 51: 255-9. PMID: 2511063, DOI: 10.1016/0378-1097(89)90406-0.Peer-Reviewed Original ResearchMeSH KeywordsAlanineAlanine-tRNA LigaseAminolevulinic AcidBacillus subtilisEscherichia coliIntramolecular TransferasesLevulinic AcidsPentose Phosphate PathwayRNA, Transfer, Amino Acid-SpecificRNA, Transfer, GluTransaminasesConceptsDelta-aminolevulinic acid biosynthesisChloroplasts of algaeTRNA-dependent transformationB. subtilisE. coliBacillus subtilisHigher plant speciesEscherichia coliPlant speciesAnaerobic eubacteriaGlutamyl-tRNAAcid biosynthesisCell-free extractsCell extractsBiosynthetic activitySubtilisDelta-aminolevulinic acidColiGabaculinAnaerobic conditionsAlaEubacteriaArchaebacteriaChloroplastsCyanobacteria
1988
The unusually long amino acid acceptor stem of Escherichia coli selenocysteine tRNA results from abnormal cleavage by RNase P
Burkard U, Söll D. The unusually long amino acid acceptor stem of Escherichia coli selenocysteine tRNA results from abnormal cleavage by RNase P. Nucleic Acids Research 1988, 16: 11617-11624. PMID: 3062578, PMCID: PMC339093, DOI: 10.1093/nar/16.24.11617.Peer-Reviewed Original ResearchAccuracy of in Vivo Aminoacylation Requires Proper Balance of tRNA and Aminoacyl-tRNA Synthetase
Swanson R, Hoben P, Sumner-Smith M, Uemura H, Watson L, Söll D. Accuracy of in Vivo Aminoacylation Requires Proper Balance of tRNA and Aminoacyl-tRNA Synthetase. Science 1988, 242: 1548-1551. PMID: 3144042, DOI: 10.1126/science.3144042.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesBeta-GalactosidaseEscherichia coliKineticsPlasmidsRNA, Transfer, Amino Acid-SpecificRNA, Transfer, GlnConceptsAminoacyl-tRNA synthetaseAminoacyl-tRNA synthetasesProtein biosynthesisAccuracy of aminoacylationCognate aminoacyl-tRNA synthetaseAmber suppressorVivo aminoacylationGln-tRNA synthetaseCognate tRNATRNAExquisite specificityAminoacylationSynthetaseAccurate aminoacylationSynthetasesBiosynthesisIntracellular concentrationRelative levelsProper balanceComplexed formsSuppressorEscherichiaGlnGenomic organization of tRNA and aminoacyl-tRNA synthetase genes for two amino acids in Saccharomyces cerevisiae
Kolman C, Snyder M, Söll D. Genomic organization of tRNA and aminoacyl-tRNA synthetase genes for two amino acids in Saccharomyces cerevisiae. Genomics 1988, 3: 201-206. PMID: 3066745, DOI: 10.1016/0888-7543(88)90080-8.Peer-Reviewed Original ResearchConceptsAminoacyl-tRNA synthetase genesContour-clamped homogeneous electric field gel electrophoresisHomogeneous electric field gel electrophoresisSynthetase geneGenomic organizationSmall multigene familyDNA gel blotsAmino acidsField gel electrophoresisGel electrophoresisTRNA genesChromosome assignmentMultigene familyGel blotsGene sequencesS. cerevisiaeChromosomal DNATRNAGenesSaccharomycesAspartic acidElectrophoresisGenomeCerevisiaeFamilyFormation of the chlorophyll precursor delta-aminolevulinic acid in cyanobacteria requires aminoacylation of a tRNAGlu species
O'Neill G, Peterson D, Schön A, Chen M, Söll D. Formation of the chlorophyll precursor delta-aminolevulinic acid in cyanobacteria requires aminoacylation of a tRNAGlu species. Journal Of Bacteriology 1988, 170: 3810-3816. PMID: 2900830, PMCID: PMC211375, DOI: 10.1128/jb.170.9.3810-3816.1988.Peer-Reviewed Original ResearchConceptsPrecursor delta-aminolevulinic acidHigher plantsUnicellular cyanobacterium Synechocystis spGlutamate-1-semialdehyde aminotransferaseCell extractsCyanobacterium Synechocystis spDelta-aminolevulinic acidSouthern blot analysisIdentical primary sequencesSynechocystis spNucleotide modificationsConversion of glutamateGene copiesALA synthesisPrimary sequenceSequence specificityTerminal enzymePolyacrylamide gel electrophoresisChloroplastsEuglena gracilisEscherichia coliSpeciesBlot analysisTRNAGel electrophoresisThe 5′-terminal guanylate of chloroplast histidine tRNA is encoded in its gene.
Burkard U, Söll D. The 5′-terminal guanylate of chloroplast histidine tRNA is encoded in its gene. Journal Of Biological Chemistry 1988, 263: 9578-9581. PMID: 2838471, DOI: 10.1016/s0021-9258(19)81555-7.Peer-Reviewed Original ResearchAnimalsBase SequenceChloroplastsCyanobacteriaDNA, RecombinantEndoribonucleasesEscherichia coliEscherichia coli ProteinsEuglena gracilisGuanine NucleotidesGuanosine MonophosphateMolecular Sequence DataPentosyltransferasesPlantsRibonuclease PRNA PrecursorsRNA, Transfer, Amino Acid-SpecificRNA, Transfer, HisSaccharomyces cerevisiaeVegetablesOverproduction and purification of Escherichia coli tRNAGln2 and its use in crystallization of the glutaminyl-tRNA synthetase-tRNAGln complex
Perona J, Swanson R, Steitz T, Söll D. Overproduction and purification of Escherichia coli tRNAGln2 and its use in crystallization of the glutaminyl-tRNA synthetase-tRNAGln complex. Journal Of Molecular Biology 1988, 202: 121-126. PMID: 2459391, DOI: 10.1016/0022-2836(88)90524-4.Peer-Reviewed Original ResearchProcessing of histidine transfer RNA precursors. Abnormal cleavage site for RNase P.
Burkard U, Willis I, Söll D. Processing of histidine transfer RNA precursors. Abnormal cleavage site for RNase P. Journal Of Biological Chemistry 1988, 263: 2447-2451. PMID: 3276688, DOI: 10.1016/s0021-9258(18)69227-0.Peer-Reviewed Original ResearchProtein biosynthesis in organelles requires misaminoacylation of tRNA
Schön A, Kannangara C, Cough S, SÖll D. Protein biosynthesis in organelles requires misaminoacylation of tRNA. Nature 1988, 331: 187-190. PMID: 3340166, DOI: 10.1038/331187a0.Peer-Reviewed Original ResearchMeSH KeywordsAcylationBase SequenceChloroplastsHordeumOrganoidsPlant ProteinsRNA, Transfer, Amino Acid-SpecificRNA, Transfer, GlnRNA, Transfer, GluConceptsProtein biosynthesisOrigin of organellesCrude chloroplast extractAnimal mitochondriaRNA involvementSpecific amidotransferaseTRNA speciesConversion of glutamateBarley chloroplastsChloroplast extractsProtein synthesisTRNAOrganellesSpeciesChloroplastsAminoacylation studiesBiosynthesisAmide donorGlutamineGlnCyanobacteriaAmidotransferaseMisaminoacylationMitochondriaOrganismsEscherichia coli glutaminyl-tRNA synthetase: a single amino acid replacement relaxes rRNA specificity.
Uemura H, Conley J, Yamao F, Rogers J, Söll D. Escherichia coli glutaminyl-tRNA synthetase: a single amino acid replacement relaxes rRNA specificity. Protein Sequences And Data Analysis 1988, 1: 479-85. PMID: 2464170.Peer-Reviewed Original ResearchConceptsGlutaminyl-tRNA synthetaseTRNA bindingEscherichia coli glutaminyl-tRNA synthetaseExtensive homology searchesSingle amino acid replacementSingle amino acid changeRegion of homologyAminoacyl-tRNA synthetasesAmino acid replacementsAminoacyl adenylate formationAmino acids 235Amino acid changesLittle apparent similarityGlnS geneTRNA discriminationHomology searchGene productsAcid replacementsShare regionsDifferent tRNAsShort stretchesGenetic selectionAcid changesAsn changeHomology