1991
Purification and functional characterization of glutamate-1-semialdehyde aminotransferase from Chlamydomonas reinhardtii.
Jahn D, Chen M, Söll D. Purification and functional characterization of glutamate-1-semialdehyde aminotransferase from Chlamydomonas reinhardtii. Journal Of Biological Chemistry 1991, 266: 161-167. PMID: 1985889, DOI: 10.1016/s0021-9258(18)52416-9.Peer-Reviewed Original ResearchMeSH KeywordsAminooxyacetic AcidCell MembraneChlamydomonasChromatography, DEAE-CelluloseChromatography, GelChromatography, High Pressure LiquidChromatography, Ion ExchangeCyclohexanecarboxylic AcidsElectrophoresis, Polyacrylamide GelIntramolecular TransferasesIsomerasesKineticsMolecular WeightPyridoxal PhosphateConceptsGlutamate-1-semialdehyde aminotransferaseGlutamyl-tRNA synthetaseC5 pathwayChlamydomonas reinhardtiiGreen alga Chlamydomonas reinhardtiiGlu-tRNA reductaseTRNA-dependent transformationChloroplasts of plantsGlutamyl-tRNA reductaseAlga Chlamydomonas reinhardtiiDelta-aminolevulinic acidApparent molecular massWhole cell extractsChlorophyll biosynthesisSodium dodecyl sulfate-polyacrylamide gel electrophoresisC. reinhardtiiDodecyl sulfate-polyacrylamide gel electrophoresisSulfate-polyacrylamide gel electrophoresisRate zonal sedimentationFunctional characterizationThird enzymeGlycerol gradientsCell extractsReinhardtiiMembrane fraction
1989
δ-Aminolevulinic acid biosynthesis in Escherichia coli and Bacillus subtilis involves formation of glutamyl-tRNA
O'Neill G, Chen M, Söll D. δ-Aminolevulinic acid biosynthesis in Escherichia coli and Bacillus subtilis involves formation of glutamyl-tRNA. FEMS Microbiology Letters 1989, 60: 255-259. DOI: 10.1111/j.1574-6968.1989.tb03482.x.Peer-Reviewed Original ResearchΔ‐Aminolevulinic acid biosynthesisChloroplasts of algaeTRNA-dependent transformationB. subtilisE. coliBacillus subtilisHigher plant speciesEscherichia coliPlant speciesAnaerobic eubacteriaAcid biosynthesisCell-free extractsCell extractsΔ-aminolevulinic acidBiosynthetic activitySubtilisColiGabaculinAbstract Cell-free extractsAnaerobic conditionsAlaEubacteriaArchaebacteriaChloroplastsCyanobacteriadelta-Aminolevulinic acid biosynthesis in Escherichia coli and Bacillus subtilis involves formation of glutamyl-tRNA.
O'Neill G, Chen M, Söll D. delta-Aminolevulinic acid biosynthesis in Escherichia coli and Bacillus subtilis involves formation of glutamyl-tRNA. FEMS Microbiology Letters 1989, 51: 255-9. PMID: 2511063, DOI: 10.1016/0378-1097(89)90406-0.Peer-Reviewed Original ResearchConceptsDelta-aminolevulinic acid biosynthesisChloroplasts of algaeTRNA-dependent transformationB. subtilisE. coliBacillus subtilisHigher plant speciesEscherichia coliPlant speciesAnaerobic eubacteriaGlutamyl-tRNAAcid biosynthesisCell-free extractsCell extractsBiosynthetic activitySubtilisDelta-aminolevulinic acidColiGabaculinAnaerobic conditionsAlaEubacteriaArchaebacteriaChloroplastsCyanobacteria
1988
Formation of the chlorophyll precursor delta-aminolevulinic acid in cyanobacteria requires aminoacylation of a tRNAGlu species
O'Neill G, Peterson D, Schön A, Chen M, Söll D. Formation of the chlorophyll precursor delta-aminolevulinic acid in cyanobacteria requires aminoacylation of a tRNAGlu species. Journal Of Bacteriology 1988, 170: 3810-3816. PMID: 2900830, PMCID: PMC211375, DOI: 10.1128/jb.170.9.3810-3816.1988.Peer-Reviewed Original ResearchConceptsPrecursor delta-aminolevulinic acidHigher plantsUnicellular cyanobacterium Synechocystis spGlutamate-1-semialdehyde aminotransferaseCell extractsCyanobacterium Synechocystis spDelta-aminolevulinic acidSouthern blot analysisIdentical primary sequencesSynechocystis spNucleotide modificationsConversion of glutamateGene copiesALA synthesisPrimary sequenceSequence specificityTerminal enzymePolyacrylamide gel electrophoresisChloroplastsEuglena gracilisEscherichia coliSpeciesBlot analysisTRNAGel electrophoresis
1985
Transcription of a Drosophila tRNAArg gene in yeast extract: 5′-flanking sequence dependence for transcription in a heterologous system
Schaack J, Söll D. Transcription of a Drosophila tRNAArg gene in yeast extract: 5′-flanking sequence dependence for transcription in a heterologous system. Nucleic Acids Research 1985, 13: 2803-2814. PMID: 3889849, PMCID: PMC341195, DOI: 10.1093/nar/13.8.2803.Peer-Reviewed Original ResearchConceptsDrosophila Kc cell extractS. cerevisiae extractTRNA genesCerevisiae extractDrosophila tRNAArg geneCell extractsDrosophila tRNA genesDrosophila Kc cellsTRNAArg geneTranscription extractActive transcriptionTranscription kineticsExtracts of SaccharomycesSteady-state levelsKc cellsHeterologous systemsS. cerevisiaeSequence requirementsLag phaseTranscriptionGenesHeterologous combinationsPARGPosition 21DeletionFunctional analysis of fractionated Drosophila Kc cell tRNA gene transcription components.
Burke D, Söll D. Functional analysis of fractionated Drosophila Kc cell tRNA gene transcription components. Journal Of Biological Chemistry 1985, 260: 816-823. PMID: 3844013, DOI: 10.1016/s0021-9258(20)71171-3.Peer-Reviewed Original ResearchConceptsTranscription componentsTRNA genesDrosophila Kc cell extractFunctional analysisActive transcription complexesHuman HeLa cellsFactor BDrosophila systemTranscription initiationStable complex formationTranscription complexC associatesLarge complexesReconstitution experimentsCell extractsHeLa cellsCell factorFactor C.Factor CGenesStable complexesComplex formationPartial purificationComplexesDNA
1984
Transcription factor binding is limited by the 5'-flanking regions of a Drosophila tRNAHis gene and a tRNAHis pseudogene.
Cooley L, Schaack J, Burke DJ, Thomas B, Söll D. Transcription factor binding is limited by the 5'-flanking regions of a Drosophila tRNAHis gene and a tRNAHis pseudogene. Molecular And Cellular Biology 1984, 4: 2714-2722. PMID: 6570190, PMCID: PMC369281, DOI: 10.1128/mcb.4.12.2714.Peer-Reviewed Original ResearchConceptsDrosophila Kc cell extractHeLa cell extractsCell extractsReal genesStable complex formationControl regionDeletion analysisStable transcription complex formationRecombinant clonesDrosophila tRNAArg geneTRNA gene clusterTranscription complex formationBona fide genesInternal control regionTranscription factor bindingSame DNA strandComplex formationTranscription control regionsConsecutive base pairsTRNAHis geneTRNAArg geneFide genesGene clusterTranscription factorsFactor bindingTranscription Factor Binding Is Limited by the 5′-Flanking Regions of a Drosophila tRNAHis Gene and a tRNAHis Pseudogene
Cooley L, Schaack J, Burke D, Thomas B, Söll D. Transcription Factor Binding Is Limited by the 5′-Flanking Regions of a Drosophila tRNAHis Gene and a tRNAHis Pseudogene. Molecular And Cellular Biology 1984, 4: 2714-2722. DOI: 10.1128/mcb.4.12.2714-2722.1984.Peer-Reviewed Original ResearchDrosophila Kc cell extractHeLa cell extractsTRNAHis geneCell extractsReal genesStable complex formationControl regionDeletion analysisStable transcription complex formationRecombinant clonesDrosophila tRNAArg geneTRNA gene clusterTranscription complex formationBona fide genesInternal control regionTranscription factor bindingSame DNA strandComplex formationTranscription control regionsConsecutive base pairsTRNAArg geneFide genesGene clusterTranscription factorsFactor bindingTranscriptionally active and inactive gene repeats within the D. meianogaster 5S RNA gene cluster
Sharp S, Garcia A, Cooley L, Söll D. Transcriptionally active and inactive gene repeats within the D. meianogaster 5S RNA gene cluster. Nucleic Acids Research 1984, 12: 7617-7632. PMID: 6093044, PMCID: PMC320189, DOI: 10.1093/nar/12.20.7617.Peer-Reviewed Original ResearchConceptsEfficiency of transcriptionRRNA gene copiesHigh transcription efficiencyTwo-nucleotide deletionD. melanogasterGene repeatRNA genesGene clusterPrimary transcriptGene copiesTranscription functionTranscription efficiencyTemplate activityCell extractsTranscriptionDNAPosition 28Position 86DNA typesRepeat unitsDeletionSame sequenceMelanogasterRRNAGenesThe extent of a eukaryotic tRNA gene. 5‘- and 3‘-flanking sequence dependence for transcription and stable complex formation.
Schaack J, Sharp S, Dingermann T, Burke DJ, Cooley L, Söll D. The extent of a eukaryotic tRNA gene. 5‘- and 3‘-flanking sequence dependence for transcription and stable complex formation. Journal Of Biological Chemistry 1984, 259: 1461-1467. PMID: 6693417, DOI: 10.1016/s0021-9258(17)43429-6.Peer-Reviewed Original ResearchConceptsStable complex formationBase pairsDrosophila Kc cell extractSequence requirementsCell extractsEukaryotic tRNA genesStable transcription complexesHeLa cell extractsTRNA genesComplex formationTranscription complexArg genesEfficient transcriptionTranscription assaysTranscription propertiesCell-free extractsTranscriptionHomologous systemGenesSequenceSequence dependenceCellular sourceExtractAssaysPairs
1983
Stable transcription complex formation of eukaryotic tRNA genes is dependent on a limited separation of the two intragenic control regions.
Dingermann T, Sharp S, Schaack J, Söll D. Stable transcription complex formation of eukaryotic tRNA genes is dependent on a limited separation of the two intragenic control regions. Journal Of Biological Chemistry 1983, 258: 10395-10402. PMID: 6309803, DOI: 10.1016/s0021-9258(17)44470-x.Peer-Reviewed Original ResearchConceptsIntragenic control regionControl regionTRNA genesTRNAArg geneDrosophila Kc cell extractStable transcription complex formationTranscription efficiencyDrosophila tRNAArg geneT-control regionMutant tRNA genesEukaryotic tRNA genesTranscription complex formationStable transcription complexesWild-type geneXhoI linkerTranscriptional roleTranscription initiationTranscription complexDNA regionsType genesTranscription factorsGene transcriptionTermination sitesDNA fragmentsCell extractsTranscription of eukaryotic tRNA genes in vitro. II. Formation of stable complexes.
Schaack J, Sharp S, Dingermann T, Söll D. Transcription of eukaryotic tRNA genes in vitro. II. Formation of stable complexes. Journal Of Biological Chemistry 1983, 258: 2447-2453. PMID: 6549758, DOI: 10.1016/s0021-9258(18)32946-6.Peer-Reviewed Original ResearchConceptsStable transcription complex formationTRNA genesTranscription complex formationStable transcription complexesTranscription complexDrosophila Kc cell extractGene regionD-stemDrosophila tRNAArg geneEukaryotic tRNA genesDrosophila tRNA genesTranscription termination sequenceTRNAArg geneStable complexesComplex formationTranscription experimentsDNA regionsTranscription factorsFactor bindingCell-free extractsTermination sequenceSequence 5T-stemCell extractsDeletion mutations
1982
The 5- flanking sequences of Drosophila tRNAArg genes control their in vitro transcription in a Drosophila cell extract.
Dingermann T, Burke D, Sharp S, Schaack J, Söll D. The 5- flanking sequences of Drosophila tRNAArg genes control their in vitro transcription in a Drosophila cell extract. Journal Of Biological Chemistry 1982, 257: 14738-14744. PMID: 6924656, DOI: 10.1016/s0021-9258(18)33342-8.Peer-Reviewed Original ResearchConceptsDrosophila tRNAArg geneTRNAArg geneDrosophila Kc cell extractFlanking sequencesTranscription efficiencyCell extractsDrosophila cell extractsEfficiency of transcriptionRegion 42ATranscriptional componentsGene clusterDrosophila extractsEfficient transcriptionTranscription factorsChromosome 2HeLa extractsTranscriptionGenesHeLa cellsSpecific sequencesHomologous extractsSequenceArgDeletionExtract
1974
15. Aminoacyl-tRNA Synthetases
Söll D, Schimmel P. 15. Aminoacyl-tRNA Synthetases. The Enzymes 1974, 10: 489-538. DOI: 10.1016/s1874-6047(08)60147-x.Peer-Reviewed Original ResearchAminoacyl-tRNA synthetasesEucaryotic organismsSpecific aminoacyl-tRNA synthetasesCorresponding cytoplasmic enzymesFamily of enzymesMitochondrial tRNAsProtein biosynthesisMammalian cellsMammalian virusesSynthetasesCytoplasmic enzymeSeparate proteinsCell extractsTRNAAmino acidsOrganismsCytoplasmSame organismEnzymeOrganellesMitochondriaMachineryProteinKey roleProcaryotes