2021
Structural basis of mismatch recognition by a SARS-CoV-2 proofreading enzyme
Liu C, Shi W, Becker ST, Schatz DG, Liu B, Yang Y. Structural basis of mismatch recognition by a SARS-CoV-2 proofreading enzyme. Science 2021, 373: 1142-1146. PMID: 34315827, PMCID: PMC9836006, DOI: 10.1126/science.abi9310.Peer-Reviewed Original ResearchConceptsCryo-electron microscopy structureRNA synthesisCoronavirus RNA synthesisNascent RNAMicroscopy structureVirus life cycleMismatch recognitionRNA substratesSubstrate specificityStructural basisMolecular mechanismsNonstructural proteinsMolecular determinantsProofreading enzymeReplication fidelityMismatch correctionAnalogue inhibitorsLife cycleExoribonucleaseExonsComplexesRNARational designProteinEnzyme
2009
Balancing AID and DNA repair during somatic hypermutation
Liu M, Schatz DG. Balancing AID and DNA repair during somatic hypermutation. Trends In Immunology 2009, 30: 173-181. PMID: 19303358, DOI: 10.1016/j.it.2009.01.007.Peer-Reviewed Original Research
2007
The Beyond 12/23 Restriction Is Imposed at the Nicking and Pairing Steps of DNA Cleavage during V(D)J Recombination
Drejer-Teel AH, Fugmann SD, Schatz DG. The Beyond 12/23 Restriction Is Imposed at the Nicking and Pairing Steps of DNA Cleavage during V(D)J Recombination. Molecular And Cellular Biology 2007, 27: 6288-6299. PMID: 17636023, PMCID: PMC2099602, DOI: 10.1128/mcb.00835-07.Peer-Reviewed Original ResearchConceptsRecombination signal sequencesDNA cleavageGene segmentsDNA cleavage stepRecombination-activating gene 1Dbeta gene segmentVariable region exonsJbeta gene segmentsRAG proteinsDNA elementsSignal sequenceDirect VbetaRegion exonsGene 1Oligonucleotide substratesLocus sequenceDistinct combinationsProteinRecombinationCleavageNickingCleavage stepSequenceDifferent stepsExonsActivation-induced Cytidine Deaminase-mediated Sequence Diversification Is Transiently Targeted to Newly Integrated DNA Substrates*
Yang SY, Fugmann SD, Gramlich HS, Schatz DG. Activation-induced Cytidine Deaminase-mediated Sequence Diversification Is Transiently Targeted to Newly Integrated DNA Substrates*. Journal Of Biological Chemistry 2007, 282: 25308-25313. PMID: 17613522, DOI: 10.1074/jbc.m704231200.Peer-Reviewed Original ResearchConceptsActivation-induced cytidine deaminaseChicken B cell line DT40B cell line DT40Cytidine deaminaseNon-Ig lociNon-Ig genesSequence diversificationDNA substratesTranscription cassetteMutation targetsCassetteMolecular characteristicsMolecular featuresDeaminaseDT40TranscriptionGenesLociDNADiversificationMutabilityTargetingIgTarget
2004
Mutational Analysis of Terminal Deoxynucleotidyltransferase- Mediated N-Nucleotide Addition in V(D)J Recombination
Repasky JA, Corbett E, Boboila C, Schatz DG. Mutational Analysis of Terminal Deoxynucleotidyltransferase- Mediated N-Nucleotide Addition in V(D)J Recombination. The Journal Of Immunology 2004, 172: 5478-5488. PMID: 15100289, DOI: 10.4049/jimmunol.172.9.5478.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibody DiversityCell LineCHO CellsCricetinaeDNA Mutational AnalysisDNA NucleotidylexotransferaseDNA-Binding ProteinsGene RearrangementHomeodomain ProteinsHumansImmunoglobulin Joining RegionImmunoglobulin Variable RegionIsoenzymesMiceNuclear ProteinsNucleotidesOpen Reading FramesPlasmidsRecombination, GeneticSignal TransductionSubstrate SpecificityTemplates, GeneticConceptsNucleotide additionEntire C-terminal regionAg receptor genesProtein-DNA interactionsC-terminal domainStructure-function analysisC-terminal regionN-terminal portionIndividual structural motifsUnique DNA polymeraseBRCT domainHelix domainTdT proteinCatalytic regionDeletional analysisMutational analysisLong isoformNontemplated (N) nucleotidesNucleotide deletionDNA polymeraseDiverse repertoireReceptor geneStructural motifsNonlymphoid cellsCritical role
2003
DNA mismatches and GC‐rich motifs target transposition by the RAG1/RAG2 transposase
Tsai C, Chatterji M, Schatz DG. DNA mismatches and GC‐rich motifs target transposition by the RAG1/RAG2 transposase. Nucleic Acids Research 2003, 31: 6180-6190. PMID: 14576304, PMCID: PMC275461, DOI: 10.1093/nar/gkg819.Peer-Reviewed Original Research
2002
RAG1-DNA Binding in V(D)J Recombination SPECIFICITY AND DNA-INDUCED CONFORMATIONAL CHANGES REVEALED BY FLUORESCENCE AND CD SPECTROSCOPY*
Ciubotaru M, Ptaszek LM, Baker GA, Baker SN, Bright FV, Schatz DG. RAG1-DNA Binding in V(D)J Recombination SPECIFICITY AND DNA-INDUCED CONFORMATIONAL CHANGES REVEALED BY FLUORESCENCE AND CD SPECTROSCOPY*. Journal Of Biological Chemistry 2002, 278: 5584-5596. PMID: 12488446, DOI: 10.1074/jbc.m209758200.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceBinding SitesCircular DichroismCloning, MolecularDNADNA NucleotidyltransferasesDNA-Binding ProteinsEscherichia coliGenes, RAG-1Homeodomain ProteinsKineticsMiceOligodeoxyribonucleotidesProtein ConformationRecombinant ProteinsRecombination, GeneticSubstrate SpecificityTransfectionTransposasesVDJ RecombinasesConceptsRecombination signal sequencesConformational changesSynaptic complex formationAbsence of DNAAssembly of immunoglobulinMajor conformational changesIntrinsic protein fluorophoresProtein intrinsic fluorescenceSolvent-exposed environmentRAG2 proteinsRAG1/2 complexSingle DNA moleculesRAG1 proteinSignal sequenceAcrylamide quenching studiesT-cell receptor genesStrep-tagRecombination specificityDNA moleculesProtein fluorophoresRAG1Receptor geneProteinIntrinsic fluorescenceCircular dichroismEvidence of a critical architectural function for the RAG proteins in end processing, protection, and joining in V(D)J recombination
Tsai CL, Drejer AH, Schatz DG. Evidence of a critical architectural function for the RAG proteins in end processing, protection, and joining in V(D)J recombination. Genes & Development 2002, 16: 1934-1949. PMID: 12154124, PMCID: PMC186421, DOI: 10.1101/gad.984502.Peer-Reviewed Original ResearchAlanineAmino Acid SubstitutionAnimalsCell LineCysteineDNADNA NucleotidyltransferasesDNA-Binding ProteinsGene Rearrangement, B-LymphocyteGenes, RAG-1Glutamic AcidHomeodomain ProteinsHumansMacromolecular SubstancesMiceMutagenesis, Site-DirectedNuclear ProteinsNucleic Acid ConformationPhenotypeProtein Interaction MappingRecombinant Fusion ProteinsRecombination, GeneticRegulatory Sequences, Nucleic AcidSerineSubstrate SpecificityVDJ Recombinases
2000
Intermolecular V(D)J Recombination*
Tevelev A, Schatz D. Intermolecular V(D)J Recombination*. Journal Of Biological Chemistry 2000, 275: 8341-8348. PMID: 10722664, DOI: 10.1074/jbc.275.12.8341.Peer-Reviewed Original ResearchIdentification of Two Catalytic Residues in RAG1 that Define a Single Active Site within the RAG1/RAG2 Protein Complex
Fugmann S, Villey I, Ptaszek L, Schatz D. Identification of Two Catalytic Residues in RAG1 that Define a Single Active Site within the RAG1/RAG2 Protein Complex. Molecular Cell 2000, 5: 97-107. PMID: 10678172, DOI: 10.1016/s1097-2765(00)80406-2.Peer-Reviewed Original ResearchConceptsActive siteDivalent metal ionsSingle active siteMetal ionsTransfer reactionsActive site regionProtein complexesBond breakageCatalysisCatalytic functionRegion of RAG1Strand transfer reactionSecondary structure prediction algorithmsAspartic acid residuesCatalytic residuesRAG2 proteinsComplexesStructure prediction algorithmsPossible structural similaritySite regionAcid residuesRetroviral integrasesRAG1Structural similarityIons
1997
Coding Joint Formation in a Cell-Free V(D)J Recombination System
Leu T, Eastman Q, Schatz D. Coding Joint Formation in a Cell-Free V(D)J Recombination System. Immunity 1997, 7: 303-314. PMID: 9285414, DOI: 10.1016/s1074-7613(00)80532-4.Peer-Reviewed Original Research