2015
Information Integration, Organization, and Numerical Harmonic Analysis
Coifman R, Talmon R, Gavish M, Haddad A. Information Integration, Organization, and Numerical Harmonic Analysis. 2015, 254-271. DOI: 10.1002/9781118853887.ch10.Peer-Reviewed Original ResearchPartial differential equationsHarmonic analysisLocal linear modelsLocal similarity modelNumerical harmonic analysisDifferential equationsMathematical frameworkNewtonian calculusGlobal solutionClassical toolsFunctional regressionLinear modelData matrixUnrelated approachesMathematicsSignal processingNumericsEquationsMachine learningGraphGlobal configurationCalculusData analysisGeometryModel
2013
Diffusion Maps for Signal Processing: A Deeper Look at Manifold-Learning Techniques Based on Kernels and Graphs
Talmon R, Cohen I, Gannot S, Coifman R. Diffusion Maps for Signal Processing: A Deeper Look at Manifold-Learning Techniques Based on Kernels and Graphs. IEEE Signal Processing Magazine 2013, 30: 75-86. DOI: 10.1109/msp.2013.2250353.Peer-Reviewed Original ResearchParametric statistical inferenceDigital signal processing systemsMachine-learning approachesKernel-based methodsSignal processingManifold learning techniquesComputational capabilitiesSignal processing systemGraphical modelsStatistical inferenceMore computationSignal processing methodsBayesian networkDSP systemsEfficient algorithmProcessing systemComputational burdenLinear filterDiffusion mapsAlgorithmProcessing methodsTraditional methodsProcessingNetworkGraph
2006
Diffusion wavelet packets
Bremer J, Coifman R, Maggioni M, Szlam A. Diffusion wavelet packets. Applied And Computational Harmonic Analysis 2006, 21: 95-112. DOI: 10.1016/j.acha.2006.04.005.Peer-Reviewed Original ResearchDiffusion waveletsWavelet packetEfficient algorithmImage denoisingSame algorithmMultiscale representationPacketsSignal processingWaveletsAlgorithmDenoisingGraphLower dimensionHigher dimensionsApplicationsTime-frequency basisComputationTaskCompressionAnisotropic settingProcessingRepresentationExampleOperatorsTool
2001
New Methods of Controlled Total Variation Reduction for Digital Functions
Coifman R, Sowa A. New Methods of Controlled Total Variation Reduction for Digital Functions. SIAM Journal On Numerical Analysis 2001, 39: 480-498. DOI: 10.1137/s0036142999362031.Peer-Reviewed Original ResearchEffective numerical procedureSingular gradientsDiscrete theoryDiscrete variablesHaar functionsTotal variationEvolution schemeAnalytical propertiesNumerical procedureNatural waySignal processingRigorous analysisHaar waveletVariation reductionAnalysis of relaxationDigital functionsNew methodRemarkable toolRegularizationEvolution processImage enhancementAdditional advantageNew principleDeformationFunction
1995
Adapted waveform "de-noising" for medical signals and images
Coifman R, Wickerhauser M. Adapted waveform "de-noising" for medical signals and images. IEEE Pulse 1995, 14: 578-586. DOI: 10.1109/51.464774.Peer-Reviewed Original Research
1994
Signal processing and compression with wavelet packets
Coifman R, Meyer Y, Quake S, Wickerhauser M. Signal processing and compression with wavelet packets. Nato Science Series C: 1994, 363-379. DOI: 10.1007/978-94-011-1028-0_18.Peer-Reviewed Original Research