2013
Bi-stochastic kernels via asymmetric affinity functions
Coifman R, Hirn M. Bi-stochastic kernels via asymmetric affinity functions. Applied And Computational Harmonic Analysis 2013, 35: 177-180. DOI: 10.1016/j.acha.2013.01.001.Peer-Reviewed Original Research
2006
Geometric harmonics: A novel tool for multiscale out-of-sample extension of empirical functions
Coifman R, Lafon S. Geometric harmonics: A novel tool for multiscale out-of-sample extension of empirical functions. Applied And Computational Harmonic Analysis 2006, 21: 31-52. DOI: 10.1016/j.acha.2005.07.005.Peer-Reviewed Original ResearchEntire space RnProlate spheroidal wave functionsLaplace-Beltrami operatorSpheroidal wave functionsFunction fSubmanifold of RnNyström methodSpace RnFourier modesSample extensionGeometric harmonicsEmpirical functionWave functionsSimple schemeExtension schemeLarge domainsSpecific familySchemeRnIntrinsic frequency spectrumExtensionFrequency spectrumSubmanifoldsEigenfunctionsSlepian