2015
Information Integration, Organization, and Numerical Harmonic Analysis
Coifman R, Talmon R, Gavish M, Haddad A. Information Integration, Organization, and Numerical Harmonic Analysis. 2015, 254-271. DOI: 10.1002/9781118853887.ch10.Peer-Reviewed Original ResearchPartial differential equationsHarmonic analysisLocal linear modelsLocal similarity modelNumerical harmonic analysisDifferential equationsMathematical frameworkNewtonian calculusGlobal solutionClassical toolsFunctional regressionLinear modelData matrixUnrelated approachesMathematicsSignal processingNumericsEquationsMachine learningGraphGlobal configurationCalculusData analysisGeometryModel
1998
Multiscale Inversion of Elliptic Operators
Averbuch A, Beylkin G, Coifman R, Israeli M. Multiscale Inversion of Elliptic Operators. Wavelet Analysis And Its Applications 1998, 7: 341-359. DOI: 10.1016/s1874-608x(98)80013-7.Peer-Reviewed Original ResearchLinear systemsCondition numberElliptic partial differential equationsPartial differential equationsLarge condition numberBoundary conditionsConjugate gradient iterationNumber of iterationsFast adaptive algorithmNumber of operationsDifferential equationsWavelet coordinatesSuch equationsMultiscale inversionDifferential operatorsElliptic operatorsDiagonal preconditionerComplicated equationsPeriodic boundary conditionsGradient iterationPoisson equationGradient algorithmConjugate directionsEquationsAdaptive algorithm
1989
Linear spectral problems, non-linear equations and the δ-method
Beals R, Coifman R. Linear spectral problems, non-linear equations and the δ-method. Inverse Problems 1989, 5: 87. DOI: 10.1088/0266-5611/5/2/002.Peer-Reviewed Original Research