Empirical intrinsic geometry for nonlinear modeling and time series filtering
Talmon R, Coifman RR. Empirical intrinsic geometry for nonlinear modeling and time series filtering. Proceedings Of The National Academy Of Sciences Of The United States Of America 2013, 110: 12535-12540. PMID: 23847205, PMCID: PMC3732962, DOI: 10.1073/pnas.1307298110.Peer-Reviewed Original ResearchIntrinsic geometryNon-Gaussian tracking problemsHigh-dimensional time seriesNonlinear filtering frameworkTime series filteringInformation geometryStochastic settingParametric manifoldTracking problemStatistical modelBayesian approachNonlinear modelingEmpirical distributionFiltering frameworkEmpirical dynamicsInstrumental modalitiesInferred modelGeometryTime seriesTime series analysisDifferent observationsReal signalsSeries analysisDynamicsAnalysis toolsNonlinear Modeling and Processing Using Empirical Intrinsic Geometry with Application to Biomedical Imaging
Talmon R, Shkolnisky Y, Coifman R. Nonlinear Modeling and Processing Using Empirical Intrinsic Geometry with Application to Biomedical Imaging. Lecture Notes In Computer Science 2013, 8085: 441-448. DOI: 10.1007/978-3-642-40020-9_48.Peer-Reviewed Original ResearchNonlinear filtering problemInformation geometryFiltering problemDifferential geometryNonlinear filteringIntrinsic modelingIntrinsic geometryBayesian frameworkStatistical modelRandom observationsNonlinear modelingInstrumental modalitiesInferred modelGeometryNoise resilientReal signalsInvariantsModelingPhoton counterModelBiomedical imagingFilteringApplicationsProblem