2013
Diffusion Maps for Signal Processing: A Deeper Look at Manifold-Learning Techniques Based on Kernels and Graphs
Talmon R, Cohen I, Gannot S, Coifman R. Diffusion Maps for Signal Processing: A Deeper Look at Manifold-Learning Techniques Based on Kernels and Graphs. IEEE Signal Processing Magazine 2013, 30: 75-86. DOI: 10.1109/msp.2013.2250353.Peer-Reviewed Original ResearchParametric statistical inferenceDigital signal processing systemsMachine-learning approachesKernel-based methodsSignal processingManifold learning techniquesComputational capabilitiesSignal processing systemGraphical modelsStatistical inferenceMore computationSignal processing methodsBayesian networkDSP systemsEfficient algorithmProcessing systemComputational burdenLinear filterDiffusion mapsAlgorithmProcessing methodsTraditional methodsProcessingNetworkGraph
2005
Geometric diffusions for the analysis of data from sensor networks
Coifman RR, Maggioni M, Zucker SW, Kevrekidis IG. Geometric diffusions for the analysis of data from sensor networks. Current Opinion In Neurobiology 2005, 15: 576-584. PMID: 16150587, DOI: 10.1016/j.conb.2005.08.012.Peer-Reviewed Original ResearchConceptsSensor networksGeometric diffusionMathematical developmentComplex data setsHarmonic analysisNeural information processingActivity datasetsCertain analogyComputer modelingData setsInformation processingManifoldNetworkModelingGraphData analysisAlgorithmNew toolDatasetAnalysis of dataAnalogyField