2011
Harmonic Analysis of Digital Data Bases
Coifman R, Gavish M. Harmonic Analysis of Digital Data Bases. Applied And Numerical Harmonic Analysis 2011, 161-197. DOI: 10.1007/978-0-8176-8095-4_9.Peer-Reviewed Original ResearchSpace of matricesData matrixData pointsEntropy conditionTensor productLaplacian eigenvectorsPotential operatorsDistribution geometryIterative procedureHarmonic analysisGraph oneAffinity graphLocal geometryEfficient reconstructionEigenvectorsGeometryData analysis methodsOperatorsGraphHaar-like basesMatrixAnalysis methodPartition treeExpansion coefficientVertices
2009
Detecting intrinsic slow variables in stochastic dynamical systems by anisotropic diffusion maps
Singer A, Erban R, Kevrekidis IG, Coifman RR. Detecting intrinsic slow variables in stochastic dynamical systems by anisotropic diffusion maps. Proceedings Of The National Academy Of Sciences Of The United States Of America 2009, 106: 16090-16095. PMID: 19706457, PMCID: PMC2752552, DOI: 10.1073/pnas.0905547106.Peer-Reviewed Original ResearchConceptsStochastic dynamical systemsModel reduction approachHigh dimensional dynamic dataDynamical systemsNonlinear independent component analysisLocal principal component analysisSlow variablesMarkov matrixGood observablesDiffusion mapsNetwork simulationAnisotropic diffusionReduction approachData analysis techniqueAnalysis techniquesEigenvectorsDynamic dataObservablesIndependent component analysisComponent analysisSimulationsMatrix
2007
Variable-free exploration of stochastic models: A gene regulatory network example
Erban R, Frewen TA, Wang X, Elston TC, Coifman R, Nadler B, Kevrekidis IG. Variable-free exploration of stochastic models: A gene regulatory network example. The Journal Of Chemical Physics 2007, 126: 155103. PMID: 17461667, DOI: 10.1063/1.2718529.Peer-Reviewed Original ResearchConceptsStochastic modelEquation-free approachLow-dimensional descriptionLong-time behaviorNetwork exampleAppropriate observablesStochastic simulationGood observablesGene regulatory networksObservablesComplex systemsDiffusion mapsSimulation dataPhysical variablesPrevious paperLong-term dynamicsAppropriate valuesDynamicsEigenvectorsLaplacianComputationRegulatory networksGraphModelRestriction procedures
2005
Comparison of Systems using Diffusion Maps
Vaidya U, Hagen G, Lafon S, Banaszuk A, Mezic I, Coifman R. Comparison of Systems using Diffusion Maps. 2005, 7931-7936. DOI: 10.1109/cdc.2005.1583444.Peer-Reviewed Original ResearchDiffusion mapsDynamical system modelWork of CoifmanSingular value decompositionPhase spaceLow-dimensional embeddingAcoustic oscillationsIntrinsic geometryQualitative behaviorDimensional embeddingCandidate modelsValue decompositionAssociated dynamicsData setsSystem modelComparison of systemsModel validationSpectral propertiesEfficient methodEigenvectorsCoifmanEt alGraphSimple metricLafon