2022
Babesia duncani in Culture and in Mouse (ICIM) Model for the Advancement of Babesia Biology, Pathogenesis, and Therapy.
Kumari V, Pal A, Singh P, Mamoun C. Babesia duncani in Culture and in Mouse (ICIM) Model for the Advancement of Babesia Biology, Pathogenesis, and Therapy. Bio-protocol 2022, 12 PMID: 36620533, PMCID: PMC9795036, DOI: 10.21769/bioprotoc.4549.Peer-Reviewed Original ResearchMouse modelHuman red blood cellsRed blood cellsC3H/HeJ miceBlood cellsHuman babesiosisMalaria-like illnessB. duncaniImportant health impactsTick-borne diseaseBlood transfusionTick biteLethal infectionHeJ miceRare caseBabesia duncaniImmunocompromised miceAnimal modelsHuman infectionsParasitic diseasesBabesia microtiDiseaseElderly peopleIntraerythrocytic parasitesB. microti
2018
Establishment of a continuous in vitro culture of Babesia duncani in human erythrocytes reveals unusually high tolerance to recommended therapies
Abraham A, Brasov I, Thekkiniath J, Kilian N, Lawres L, Gao R, DeBus K, He L, Yu X, Zhu G, Graham MM, Liu X, Molestina R, Ben Mamoun C. Establishment of a continuous in vitro culture of Babesia duncani in human erythrocytes reveals unusually high tolerance to recommended therapies. Journal Of Biological Chemistry 2018, 293: 19974-19981. PMID: 30463941, PMCID: PMC6311517, DOI: 10.1074/jbc.ac118.005771.Peer-Reviewed Original ResearchConceptsHuman babesiosisBetter therapeutic strategiesHigher parasite burdenTick-borne diseaseFulminant infectionRed blood cellsTherapeutic strategiesHuman erythrocytesParasite burdenClinical casesSevere pathologyHuman red blood cellsNew disease modelsBlood cellsDisease modelsInfectionDiseaseBabesiosisDeathRelevant model systemParasitesApicomplexan parasitesDaughter parasitesErythrocytesFurther research