2021
Animal Models of COVID-19 II. Comparative Immunology
Veenhuis RT, Zeiss CJ. Animal Models of COVID-19 II. Comparative Immunology. ILAR Journal 2021, 62: ilab010-. PMID: 33914873, PMCID: PMC8135340, DOI: 10.1093/ilar/ilab010.Peer-Reviewed Original ResearchConceptsSARS-CoV-2Animal modelsLarge animal modelCytokine surgeCell infiltrationAcute respiratory syndrome coronavirus 2 infectionSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectionSyndrome coronavirus 2 infectionSevere coronavirus disease 2019SARS-CoV-2 infectionCoronavirus 2 infectionT cell responsesImmune cell infiltrationStrong antibody responseAnimal model studiesCoronavirus disease 2019Large animal model studyImmunological questionsHigh mortality rateCOVID-19Small animal modelsImmune system functionAfrican green monkeysSARS-CoV-2 researchVaccine efficacyAnimal Models of COVID-19. I. Comparative Virology and Disease Pathogenesis
Zeiss CJ, Compton S, Veenhuis RT. Animal Models of COVID-19. I. Comparative Virology and Disease Pathogenesis. ILAR Journal 2021, 62: ilab007-. PMID: 33836527, PMCID: PMC8083356, DOI: 10.1093/ilar/ilab007.Peer-Reviewed Original ResearchConceptsSARS-CoV-2SARS-CoVViral sheddingImmune responseSpontaneous modelAnimal modelsDisease pathogenesisSARS-CoV-2 infectionCOVID-19Severe acute respiratory syndrome coronavirusAcute respiratory syndrome coronavirusChimeric SARS-CoVRole of comorbiditiesCoronavirus disease 2019 (COVID-19) pandemicShort-term immune responseWild-type miceSeverity of diseaseOrgan-specific pathologySARS-CoV-2 virusDisease 2019 pandemicAfrican green monkeysTest therapeuticsVaccine approachesNonfatal diseaseTissue involvementAge‐related calcium dysregulation linked with tau pathology and impaired cognition in non‐human primates
Datta D, Leslie SN, Wang M, Morozov YM, Yang S, Mentone S, Zeiss C, Duque A, Rakic P, Horvath TL, van Dyck C, Nairn AC, Arnsten AFT. Age‐related calcium dysregulation linked with tau pathology and impaired cognition in non‐human primates. Alzheimer's & Dementia 2021, 17: 920-932. PMID: 33829643, PMCID: PMC8195842, DOI: 10.1002/alz.12325.Peer-Reviewed Original ResearchConceptsTau pathologyCalcium leakTau phosphorylationNeuronal firingAlzheimer's diseaseEarly tau phosphorylationPyramidal cell dendritesSporadic Alzheimer's diseasePrimary cortical neuronsPotential therapeutic targetCognitive performanceAge-related reductionMacaque dorsolateral prefrontal cortexDorsolateral prefrontal cortexNon-human primatesCalcium dysregulationCell dendritesCortical neuronsCalcium-binding proteinsAD biomarkersPathology markersTherapeutic targetAnimal modelsAged monkeysPrefrontal cortex
2020
Utility of spontaneous animal models of Alzheimer’s disease in preclinical efficacy studies
Zeiss CJ. Utility of spontaneous animal models of Alzheimer’s disease in preclinical efficacy studies. Cell And Tissue Research 2020, 380: 273-286. PMID: 32337614, DOI: 10.1007/s00441-020-03198-6.Peer-Reviewed Original ResearchConceptsHuman Alzheimer's diseaseSpontaneous animal modelAlzheimer's diseaseAnimal modelsBiomarker progressionProgression of neuropathologyLate-onset Alzheimer's diseasePreclinical efficacy studiesHuman clinical trialsOnset Alzheimer's diseaseUsable outcome measuresAD-associated mutationsFamilial Alzheimer's diseaseNon-human primatesAmyloid neuropathologyInterventional studyClinical trialsSpontaneous modelHuman trialsOutcome measuresTherapeutic successPotential therapyNew therapiesRodent studiesEfficacy studies
2019
An ABCA4 loss-of-function mutation causes a canine form of Stargardt disease
Mäkeläinen S, Gòdia M, Hellsand M, Viluma A, Hahn D, Makdoumi K, Zeiss CJ, Mellersh C, Ricketts SL, Narfström K, Hallböök F, Ekesten B, Andersson G, Bergström TF. An ABCA4 loss-of-function mutation causes a canine form of Stargardt disease. PLOS Genetics 2019, 15: e1007873. PMID: 30889179, PMCID: PMC6424408, DOI: 10.1371/journal.pgen.1007873.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsATP Binding Cassette Transporter, Subfamily A, Member 4ATP-Binding Cassette TransportersBase SequenceCodon, NonsenseDisease Models, AnimalDog DiseasesDogsFemaleGenes, RecessiveHomozygoteHumansLipofuscinMacular DegenerationMaleMicroscopy, FluorescenceModels, MolecularMutagenesis, InsertionalMutationPedigreeProtein ConformationRetinaStargardt DiseaseWhole Genome SequencingConceptsRetinal pigment epitheliumStargardt diseaseAutosomal recessive retinal degenerative diseaseRetinal degenerationABCA4 geneVisual impairmentCentral visual impairmentFull-length ABCA4 proteinFunction mutationsLabrador Retriever dogsLarge animal modelRetinal degenerative diseasesAutosomal recessive retinal degenerationMember 4 geneRecessive retinal degenerationStandard treatmentClinical trialsClinical signsLipofuscin depositsPigment epitheliumAnimal modelsCanine modelUnaffected dogsAffected dogsCone photoreceptors
2018
Pathology Study Design, Conduct, and Reporting to Achieve Rigor and Reproducibility in Translational Research Using Animal Models.
Everitt JI, Treuting PM, Scudamore C, Sellers R, Turner PV, Ward JM, Zeiss CJ. Pathology Study Design, Conduct, and Reporting to Achieve Rigor and Reproducibility in Translational Research Using Animal Models. ILAR Journal 2018, 59: 4-12. PMID: 30624739, DOI: 10.1093/ilar/ily020.Peer-Reviewed Original ResearchConceptsAnimal modelsAnimal model-based researchAnimal study dataPreclinical animal modelsHuman clinical experienceHuman clinical trialsPreclinical animal studiesAnimal-based studiesPreclinical animal experimentsPreclinical investigatorsClinical trialsPotential therapyAnimal studiesClinical experiencePathology analysisPathology practiceStudy designAnimal experimentsPathology methodsTranslational researchTissue collectionLimited concordanceComparative pathologistsReproducibility of dataToxicologic Pathology
2014
Improving the predictive value of interventional animal models data
Zeiss CJ. Improving the predictive value of interventional animal models data. Drug Discovery Today 2014, 20: 475-482. PMID: 25448761, PMCID: PMC4417064, DOI: 10.1016/j.drudis.2014.10.015.Peer-Reviewed Original ResearchConceptsAnimal studiesSignificant potential confoundersAnimal model dataPercent of interventionsMore animal modelsPotential confoundersChronic diseasesImproved outcomesAmyloid hypothesisAnimal modelsPredictive valueAlzheimer's diseasePositive outcomesDiseaseTranslational successOutcomesPositive-outcome biasInterventionAdditional mechanismAnimalsMemantineConfoundersDonepezil
2013
MyD88 Deficiency Markedly Worsens Tissue Inflammation and Bacterial Clearance in Mice Infected with Treponema pallidum, the Agent of Syphilis
Silver AC, Dunne DW, Zeiss CJ, Bockenstedt LK, Radolf JD, Salazar JC, Fikrig E. MyD88 Deficiency Markedly Worsens Tissue Inflammation and Bacterial Clearance in Mice Infected with Treponema pallidum, the Agent of Syphilis. PLOS ONE 2013, 8: e71388. PMID: 23940747, PMCID: PMC3734110, DOI: 10.1371/journal.pone.0071388.Peer-Reviewed Original ResearchConceptsMyD88-deficient miceTreponema pallidumMyD88-deficient animalsResistance of miceToll-like receptorsWild-type miceMyD88-deficient macrophagesMacrophage-mediated clearanceHigh pathogen burdenMyD88 deficiencySpirochete Treponema pallidumWT miceTissue infiltratesBacterial clearanceExtensive inflammationTissue inflammationPlasma cellsControl animalsWT macrophagesMost TLRsAnimal modelsMixed mononuclearPathogen burdenMiceT. pallidumTranslational models of ocular disease
Zeiss CJ. Translational models of ocular disease. Veterinary Ophthalmology 2013, 16: 15-33. PMID: 23750503, DOI: 10.1111/vop.12065.Peer-Reviewed Original ResearchConceptsLarge animal modelIntraocular neoplasiaStromal diseaseOcular diseasesAnimal modelsRetinal dystrophyTherapeutic potentialTranslational modelClinical veterinary medicineLaboratory animalsDomestic animalsDiseaseHuman medicineAnimalsVeterinary medicineMechanistic discoveriesGenetic contributionHumansMedicineUveitis
2010
REVIEW PAPER: Animals as Models of Age-Related Macular Degeneration
Zeiss CJ. REVIEW PAPER: Animals as Models of Age-Related Macular Degeneration. Veterinary Pathology 2010, 47: 396-413. PMID: 20382825, DOI: 10.1177/0300985809359598.Peer-Reviewed Original ResearchConceptsAge-related macular degenerationMacular degenerationRelevant mouse modelNonhuman primate modelCause of blindnessRetinal pigment epitheliumMajority of casesEtiologic complexityAMD pathologyChoroidal neovascularizationEtiologic factorsModel of agePrimate modelRodent retinaPathogenetic mechanismsMouse modelGenetic predispositionSalient anatomyPigment epitheliumAnimal modelsDegenerative conditionsComplement activationLipid metabolismBruch's membraneGene function
2008
Reversal of Blindness in Animal Models of Leber Congenital Amaurosis Using Optimized AAV2-mediated Gene Transfer
Bennicelli J, Wright JF, Komaromy A, Jacobs JB, Hauck B, Zelenaia O, Mingozzi F, Hui D, Chung D, Rex TS, Wei Z, Qu G, Zhou S, Zeiss C, Arruda VR, Acland GM, Dell'Osso LF, High KA, Maguire AM, Bennett J. Reversal of Blindness in Animal Models of Leber Congenital Amaurosis Using Optimized AAV2-mediated Gene Transfer. Molecular Therapy 2008, 16: 458-465. PMID: 18209734, PMCID: PMC2842085, DOI: 10.1038/sj.mt.6300389.Peer-Reviewed Original ResearchConceptsLeber congenital amaurosisAnimal modelsCongenital amaurosisReversal of blindnessRetinal pigment epithelium cellsWeeks of injectionPigment epithelium cellsRPE65 formDose of vectorAppropriate target cellsVisual acuityVisual deficitsHistopathologic analysisAdeno-associated virusERG responsesRPE65 mutationsSubretinal deliveryEpithelium cellsMutant miceMinimal toxicityProtein expressionTarget cellsPupillary responseElectroretinogramAmaurosis
2005
CNTF induces dose-dependent alterations in retinal morphology in normal and rcd-1 canine retina
Zeiss CJ, Allore HG, Towle V, Tao W. CNTF induces dose-dependent alterations in retinal morphology in normal and rcd-1 canine retina. Experimental Eye Research 2005, 82: 395-404. PMID: 16143329, DOI: 10.1016/j.exer.2005.07.014.Peer-Reviewed Original ResearchConceptsCiliary neurotrophic factorInner retinal thicknessRetinitis pigmentosaRetinal thicknessGanglion cellsEffects of CNTFInner nuclear layer thicknessNormal retinal electrophysiologyGanglion cell morphologyOuter nuclear layerWild-type retinasDose-dependent mannerDose-dependent alterationsContralateral eyeControl dogsNeurotrophic factorExpression of rhodopsinRetinal electrophysiologyNuclear layerProtective effectRetinal morphologyEntire retinaAnimal modelsCone arrestinCanine model