2007
Chapter 59 Cardiopulmonary bypass
Smith B, Rinder H, Rinder C. Chapter 59 Cardiopulmonary bypass. 2007, 1077-1095. DOI: 10.1016/b978-012369367-9/50821-1.Peer-Reviewed Original ResearchCardiopulmonary bypassHemostatic abnormalitiesMassive pulmonary embolismSevere respiratory failurePulmonary dysfunctionRenal dysfunctionRespiratory failureHemodynamic supportPulmonary embolismCardiac surgeryCardiac arrestEnvironmental hypothermiaMyocardial ischemiaPlatelet effectsClinical abnormalitiesCPB proceduresAbnormalitiesPhysiologic interactionsDysfunctionBypassPossible rolePrimary roleEmbolismComplicationsIschemia
2002
Platelet PlA2 Polymorphism and Platelet Activation Are Associated with Increased Troponin I Release after Cardiopulmonary Bypass
Rinder CS, Mathew JP, Rinder HM, Howe J, Fontes M, Crouch J, Pfau S, Patel P, Smith BR. Platelet PlA2 Polymorphism and Platelet Activation Are Associated with Increased Troponin I Release after Cardiopulmonary Bypass. Anesthesiology 2002, 97: 1118-1122. PMID: 12411794, DOI: 10.1097/00000542-200211000-00013.Peer-Reviewed Original ResearchConceptsTroponin I concentrationsPlatelet glycoprotein IIIaCardiopulmonary bypassPlA2 polymorphismPlA2 alleleI concentrationsMyocardial injuryGlycoprotein IIIaPlatelet activationElective coronary artery bypassHigher troponin I concentrationsPostoperative troponin I concentrationsTroponin IPerioperative myocardial injuryCoronary artery bypassProthrombotic risk factorsCardiopulmonary bypass surgerySevere myocardial injuryArtery bypassBypass surgeryPlatelet polymorphismsRisk factorsCardiovascular settingsPlA2 genotypeBypass
1995
Blockade of C5a and C5b-9 generation inhibits leukocyte and platelet activation during extracorporeal circulation.
Rinder CS, Rinder HM, Smith BR, Fitch JC, Smith MJ, Tracey JB, Matis LA, Squinto SP, Rollins SA. Blockade of C5a and C5b-9 generation inhibits leukocyte and platelet activation during extracorporeal circulation. Journal Of Clinical Investigation 1995, 96: 1564-1572. PMID: 7657827, PMCID: PMC185782, DOI: 10.1172/jci118195.Peer-Reviewed Original ResearchConceptsCardiopulmonary bypassExtracorporeal circulationSerum complement hemolytic activityComplement activationComplement componentsP-selectin-positive plateletsC5 complement componentNeutrophil CD11b upregulationSystemic inflammatory responseBlockade of C5aComplement hemolytic activityC5b-9 generationNeutrophil activationCD11b upregulationControl MAbInflammatory responseTherapeutic interventionsPlatelet activationCellular activationC5b-9BypassC5aC3a generationConjugate formationPlateletsAcadesine inhibits neutrophil CD11b up-regulation in vitro and during in vivo cardiopulmonary bypass
Mathew J, Rinder C, Tracey J, Auszura L, O'Connor T, Davis E, Smith B. Acadesine inhibits neutrophil CD11b up-regulation in vitro and during in vivo cardiopulmonary bypass. Journal Of Thoracic And Cardiovascular Surgery 1995, 109: 448-456. PMID: 7877305, DOI: 10.1016/s0022-5223(95)70275-x.Peer-Reviewed Original ResearchConceptsGranulocyte CD11bCardiopulmonary bypassReperfusion injuryIschemic tissueHigh-dose treatment groupVivo reperfusion injuryGranulocyte CD11b expressionCD11b/CD18Acadesine groupMulticenter trialCD11b expressionAdenosine levelsTreatment groupsAnimal modelsCD11bControl diluentAcadesineBypassInjuryWhole bloodGranulocyte adhesionSimilar inhibitionVivo trialsPatientsTrials
1992
Cardiopulmonary bypass induces leukocyte-platelet adhesion
Rinder C, Bonan J, Rinder H, Mathew J, Hines R, Smith B. Cardiopulmonary bypass induces leukocyte-platelet adhesion. Blood 1992, 79: 1201-1205. DOI: 10.1182/blood.v79.5.1201.bloodjournal7951201.Peer-Reviewed Original ResearchLeukocyte-platelet conjugatesCardiopulmonary bypassMonocyte-platelet conjugatesEnd of CPBStart of CPBActivation of monocytesAlpha-granule releaseGMP-140 expressionGranule membrane protein-140Time courseLeukocyte-platelet adhesionCD11b expressionMonocyte activationSurface CD11bWhole bloodGMP-140Surface expressionProtein 140Increased numberCD11bBypassMonocytesPlateletsPlatelet adhesionConjugatesCardiopulmonary Bypass Induces Leukocyte-Platelet Adhesion
Rinder C, Bonan J, Rinder H, Mathew J, Hines R, Smith B. Cardiopulmonary Bypass Induces Leukocyte-Platelet Adhesion. Blood 1992, 79: 1201-1205. PMID: 1371416, DOI: 10.1182/blood.v79.5.1201.1201.Peer-Reviewed Original ResearchConceptsLeukocyte-platelet conjugatesCardiopulmonary bypassMonocyte-platelet conjugatesEnd of CPBStart of CPBActivation of monocytesAlpha-granule releaseGMP-140 expressionGranule membrane protein-140Time courseLeukocyte-platelet adhesionCD11b expressionMonocyte activationSurface CD11bWhole bloodGMP-140Surface expressionProtein 140Increased numberCD11bBypassMonocytesPlateletsPlatelet adhesionConjugates
1991
Modulation of Platelet Surface Adhesion Receptors during Cardiopulmonary Bypass
Rinder C, Mathew J, Rinder H, Bonan J, Ault K, Smith B. Modulation of Platelet Surface Adhesion Receptors during Cardiopulmonary Bypass. Anesthesiology 1991, 75: 563-570. PMID: 1718190, DOI: 10.1097/00000542-199110000-00004.Peer-Reviewed Original ResearchConceptsIIb/IIIaCardiopulmonary bypassGlycoprotein IIb/IIIaPlatelet activationQualitative platelet defectsGlycoprotein IVGlycoprotein IbAlpha-granule releaseGranule membrane protein-140Surface glycoprotein IbHLA APlatelet functionBaseline valuesVon Willebrand factor receptorBypassThrombospondin receptorGlycoprotein Ib expressionFlow cytometryIb expressionPlatelet defectsSelective decreasePlatelet receptorsFactor receptorReceptorsProtein 140