2018
Regulation of C-C chemokine receptor 5 (CCR5) stability by Lys197 and by transmembrane protein aptamers that target it for lysosomal degradation
Petti LM, Marlatt SA, Luo Y, Scheideman EH, Shelar A, DiMaio D. Regulation of C-C chemokine receptor 5 (CCR5) stability by Lys197 and by transmembrane protein aptamers that target it for lysosomal degradation. Journal Of Biological Chemistry 2018, 293: 8787-8801. PMID: 29678881, PMCID: PMC5995508, DOI: 10.1074/jbc.ra117.001067.Peer-Reviewed Original ResearchConceptsG protein-coupled receptorsC motif chemokine receptor 5Transmembrane helicesAmino acidsProtein aptamerFifth transmembrane helixUncharged amino acidsSpecific amino acidsProtein-coupled receptorsSubstitution of LysTraptamersReceptor stabilityLysosomal degradationHomologous positionsDiverse mechanismsChemokine receptor 5Initial characterizationNew therapeutic approachesHuman T cellsStable complexesCCR5 expressionCentral roleNew insightsChemokine receptorsHelix
2017
Single methyl groups can act as toggle switches to specify transmembrane Protein-protein interactions
He L, Steinocher H, Shelar A, Cohen EB, Heim EN, Kragelund BB, Grigoryan G, DiMaio D. Single methyl groups can act as toggle switches to specify transmembrane Protein-protein interactions. ELife 2017, 6: e27701. PMID: 28869036, PMCID: PMC5597333, DOI: 10.7554/elife.27701.Peer-Reviewed Original ResearchConceptsProtein-protein interactionsErythropoietin receptorTransmembrane proteinTransmembrane protein-protein interactionsTMD interactionsModel transmembrane proteinMouse erythropoietin receptorHuman erythropoietin receptorSingle methyl groupGrowth factor independenceSide chain methyl groupsCellular processesMouse cellsFactor independenceChain methyl groupsIntrinsic specificityToggle switchTraptamersMethyl groupProteinReceptor activitySpecific positionsReceptorsSpecificityOligomerization
2014
Sequence and conformational preferences at termini of α‐helices in membrane proteins: Role of the helix environment
Shelar A, Bansal M. Sequence and conformational preferences at termini of α‐helices in membrane proteins: Role of the helix environment. Proteins Structure Function And Bioinformatics 2014, 82: 3420-3436. PMID: 25257385, DOI: 10.1002/prot.24696.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsAmino Acid SequenceAnimalsComputational BiologyConserved SequenceDatabases, ProteinHumansHydrogen BondingHydrophobic and Hydrophilic InteractionsLipid BilayersMembrane ProteinsModels, BiologicalProtein ConformationProtein FoldingProtein StabilityProtein Structure, SecondarySoftware ValidationTerminology as TopicConceptsMembrane proteinsSequence preferenceΑ-helixC-terminusHelical membrane proteinsCommon secondary structural elementsHelix terminiStructural motifsSecondary structural elementsSecondary structure predictionRat neurotensin receptorTransmembrane helicesMembrane environmentHelix bundleSequencing studiesHelical positionsAmino acidsProteinStructure predictionTerminusMembrane coreGlobular proteinsMotifHelixConformational preferences