2020
Chaperonin-assisted protein folding: a chronologue
Horwich AL, Fenton WA. Chaperonin-assisted protein folding: a chronologue. Quarterly Reviews Of Biophysics 2020, 53: e4. PMID: 32070442, DOI: 10.1017/s0033583519000143.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAmino AcidsAnimalsCarbon DioxideChaperoninsCytosolDimerizationHeat-Shock ProteinsHumansHydrophobic and Hydrophilic InteractionsKineticsMiceMitochondriaMutationNeurosporaProtein ConformationProtein DenaturationProtein FoldingRibonuclease, PancreaticRibulose-Bisphosphate CarboxylaseSurface PropertiesTemperature
2016
Reduced high-frequency motor neuron firing, EMG fractionation, and gait variability in awake walking ALS mice
Hadzipasic M, Ni W, Nagy M, Steenrod N, McGinley MJ, Kaushal A, Thomas E, McCormick DA, Horwich AL. Reduced high-frequency motor neuron firing, EMG fractionation, and gait variability in awake walking ALS mice. Proceedings Of The National Academy Of Sciences Of The United States Of America 2016, 113: e7600-e7609. PMID: 27821773, PMCID: PMC5127366, DOI: 10.1073/pnas.1616832113.Peer-Reviewed Original ResearchConceptsALS miceAmyotrophic lateral sclerosisAcute spinal cord slicesSingle-unit extracellular recordingsWhole-cell patch-clamp recordingsLoss of neuronsMotor neuron lossMotor neuron firingSpinal cord slicesPatch-clamp recordingsHigh-frequency firingStep variabilityLethal neurodegenerative diseaseNeuron lossCord slicesSpinal cordLeg flexorsLateral sclerosisGait variabilityVivo effectsClamp recordingsExtracellular recordingsEMG patternsMutant miceNeuron firing
1997
Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL
Rye H, Burston S, Fenton W, Beechem J, Xu Z, Sigler P, Horwich A. Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL. Nature 1997, 388: 792-798. PMID: 9285593, DOI: 10.1038/42047.Peer-Reviewed Original ResearchConceptsTrans ringProductive foldingGroES complexChaperonin GroELCis ringCo-chaperone GroESDouble-ring complexesCis ternary complexNon-hydrolysable ATPHydrolysis of ATPGroEL functionGroEL-ATPATP bindingEfficient foldingBinds ATPATP hydrolysisGroESMutant formsMalate dehydrogenaseGroELAMP-PNPDouble-ring structureFoldingTernary complexATP
1996
Characterization of the Active Intermediate of a GroEL–GroES-Mediated Protein Folding Reaction
Weissman J, Rye H, Fenton W, Beechem J, Horwich A. Characterization of the Active Intermediate of a GroEL–GroES-Mediated Protein Folding Reaction. Cell 1996, 84: 481-490. PMID: 8608602, DOI: 10.1016/s0092-8674(00)81293-3.Peer-Reviewed Original ResearchConceptsCis ternary complexProtein foldingRelease of GroESAddition of GroESFolding reactionTernary complexNonhydrolyzable ATP analogGroES releaseProtein folding reactionSubstrate proteinsPresence of ATPGroEL mutantGroEL-GroESGroEL complexNonnative substratesATP hydrolysisGroESComplete foldingSubstrate flexibilityATP analogFoldingFluorescence anisotropyActive stateATPRecent studies
1992
Two related genes encoding extremely hydrophobic proteins suppress a lethal mutation in the yeast mitochondrial processing enhancing protein.
West A, Clark D, Martin J, Neupert W, Hartl F, Horwich A. Two related genes encoding extremely hydrophobic proteins suppress a lethal mutation in the yeast mitochondrial processing enhancing protein. Journal Of Biological Chemistry 1992, 267: 24625-24633. PMID: 1447206, DOI: 10.1016/s0021-9258(18)35810-1.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceBase SequenceChromosomes, FungalDNA, FungalGenes, FungalGenes, LethalGenes, SuppressorGenotypeMitochondriaMolecular Sequence DataMutationOpen Reading FramesPeptidesPlasmidsProtein ConformationRestriction MappingSaccharomyces cerevisiaeSequence DeletionSequence Homology, Amino AcidSuppression, GeneticTemperatureConceptsProtein importHydrophobic proteinsNH2-terminal signal peptideYeast genomic libraryNonfermentable carbon sourcesProteins of mitochondriaMitochondrial membrane proteinPrecursor proteinHigh-copy plasmidMitochondrial processingProtein translocationGenomic libraryPEP geneGrowth defectChromosomal genesMembrane proteinsMitochondrial matrixSignal peptideGenetic suppressionLethal mutationsMitochondrial membraneDouble disruptionRelated genesSequence analysisProteolytic removal
1990
Hepadnavirus envelope proteins regulate covalently closed circular DNA amplification
Summers J, Smith P, Horwich A. Hepadnavirus envelope proteins regulate covalently closed circular DNA amplification. Journal Of Virology 1990, 64: 2819-2824. PMID: 2335817, PMCID: PMC249463, DOI: 10.1128/jvi.64.6.2819-2824.1990.Peer-Reviewed Original ResearchConceptsCccDNA synthesisEnvelope proteinVirus-mediated cell deathHepadnavirus envelope proteinsCircular DNA amplificationViral DNA synthesisWild-type virusWild typeViral envelope proteinsCell deathCircular DNAPrimary duck hepatocytesDNA synthesisProteinDNA amplificationPersistent infectionDuck hepatocytesSynthesis of hepadnavirus particles that contain replication-defective duck hepatitis B virus genomes in cultured HuH7 cells
Horwich A, Furtak K, Pugh J, Summers J. Synthesis of hepadnavirus particles that contain replication-defective duck hepatitis B virus genomes in cultured HuH7 cells. Journal Of Virology 1990, 64: 642-650. PMID: 2153230, PMCID: PMC249155, DOI: 10.1128/jvi.64.2.642-650.1990.Peer-Reviewed Original ResearchConceptsHepatitis B virus genomeDirect repeat 1Duck hepatitis B virus genomesInfectious virusViral DNA synthesisVirus antigen productionCore antigenDNA-containing viral particlesHepatoma cell line Huh7Human hepatoma cell line Huh7Cultured Huh7 cellsDNA synthesisVirus genomeAntigen productionHuh7 cellsEnvelope proteinViral particlesLoss of abilityViral DNA
1989
Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria
Cheng M, Hartl F, Martin J, Pollock R, Kalousek F, Neuper W, Hallberg E, Hallberg R, Horwich A. Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 1989, 337: 620-625. PMID: 2645524, DOI: 10.1038/337620a0.Peer-Reviewed Original Research
1988
The processing peptidase of yeast mitochondria: the two co‐operating components MPP and PEP are structurally related.
Pollock R, Hartl F, Cheng M, Ostermann J, Horwich A, Neupert W. The processing peptidase of yeast mitochondria: the two co‐operating components MPP and PEP are structurally related. The EMBO Journal 1988, 7: 3493-3500. PMID: 3061797, PMCID: PMC454850, DOI: 10.1002/j.1460-2075.1988.tb03225.x.Peer-Reviewed Original ResearchConceptsMitochondrial processing peptidaseMitochondrial precursor proteinsProcessing peptidasePrecursor proteinMutant of SaccharomycesRemarkable sequence similarityYeast mitochondriaMPP geneSequence similarityHydrophilic proteinNovel peptidaseAmino acidsProteolytic cleavageProteinPeptidaseMutantsMitochondriaCommon originPresequenceSaccharomycesPEPGenesMutationsCleavageFunction
1987
The ornithine transcarbamylase leader peptide directs mitochondrial import through both its midportion structure and net positive charge.
Horwich A, Kalousek F, Fenton W, Furtak K, Pollock R, Rosenberg L. The ornithine transcarbamylase leader peptide directs mitochondrial import through both its midportion structure and net positive charge. Journal Of Cell Biology 1987, 105: 669-677. PMID: 3624306, PMCID: PMC2114782, DOI: 10.1083/jcb.105.2.669.Peer-Reviewed Original ResearchImport and processing of human ornithine transcarbamoylase precursor by mitochondria from Saccharomyces cerevisiae.
Cheng M, Pollock R, Hendrick J, Horwich A. Import and processing of human ornithine transcarbamoylase precursor by mitochondria from Saccharomyces cerevisiae. Proceedings Of The National Academy Of Sciences Of The United States Of America 1987, 84: 4063-4067. PMID: 3295876, PMCID: PMC305022, DOI: 10.1073/pnas.84.12.4063.Peer-Reviewed Original ResearchConceptsMitochondrial membraneEnzymatic activityNH2-terminal leader peptideMitochondrial matrix fractionWild-type precursorS. cerevisiae strainMitochondrial importMammalian mitochondriaMature subunitSubunit precursorOperon promoterS. cerevisiaeSelective growth conditionsLeader peptideYeast cellsArtificial mutationsOTCase activityMatrix fractionOrnithine transcarbamoylaseCerevisiae strainSaccharomycesGrowth conditionsMatrix compartmentMitochondriaSubunits
1986
DNA analysis for ornithine transcarbamylase deficiency
Rozen R, Fox J, Hack A, Fenton W, Horwich A, Rosenberg L. DNA analysis for ornithine transcarbamylase deficiency. Journal Of Inherited Metabolic Disease 1986, 9: 49-57. PMID: 2878115, DOI: 10.1007/bf01800858.Peer-Reviewed Original ResearchTargeting of pre-ornithine transcarbamylase to mitochondria: Definition of critical regions and residues in the leader peptide
Horwich A, Kalousek F, Fenton W, Pollock R, Rosenberg L. Targeting of pre-ornithine transcarbamylase to mitochondria: Definition of critical regions and residues in the leader peptide. Cell 1986, 44: 451-459. PMID: 3943133, DOI: 10.1016/0092-8674(86)90466-6.Peer-Reviewed Original Research
1985
Arginine in the leader peptide is required for both import and proteolytic cleavage of a mitochondrial precursor.
Horwich A, Kalousek F, Rosenberg L. Arginine in the leader peptide is required for both import and proteolytic cleavage of a mitochondrial precursor. Proceedings Of The National Academy Of Sciences Of The United States Of America 1985, 82: 4930-4933. PMID: 3895227, PMCID: PMC390471, DOI: 10.1073/pnas.82.15.4930.Peer-Reviewed Original ResearchConceptsLeader peptideOrnithine transcarbamoylaseImport of precursorsMost mitochondrial proteinsMitochondrial matrix fractionOverall amino acid compositionMitochondrial matrix enzymeMitochondrial precursorsMitochondrial proteinsSubunit precursorAmino acid compositionBasic arginine residuesBasic residuesMatrix enzymeGlycine residueLarger precursorArginine residuesMatrix fractionIntact mitochondriaNH2-terminalDependent proteaseProteolytic cleavageTranscarbamoylaseResiduesMitochondria