2001
Changes in the phosphorylation of initiation factor eIF‐2α, elongation factor eEF‐2 and p70 S6 kinase after transient focal cerebral ischaemia in mice
Althausen S, Mengesdorf T, Mies G, Oláh L, Nairn A, Proud C, Paschen W. Changes in the phosphorylation of initiation factor eIF‐2α, elongation factor eEF‐2 and p70 S6 kinase after transient focal cerebral ischaemia in mice. Journal Of Neurochemistry 2001, 78: 779-787. PMID: 11520898, DOI: 10.1046/j.1471-4159.2001.00462.x.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCells, CulturedCerebral CortexCerebrovascular CirculationEnzyme InhibitorsEukaryotic Initiation Factor-2ImmunoblottingImmunohistochemistryIschemic Attack, TransientLaser-Doppler FlowmetryMiceMiddle Cerebral ArteryNeuronsPeptide Elongation Factor 2PhosphorylationProtein BiosynthesisRatsRats, WistarRibosomal Protein S6 KinasesThapsigarginConceptsIschaemia-induced changesTransient focal cerebral ischaemiaMiddle cerebral arteryFocal cerebral ischaemiaCerebral ischaemiaP70 S6 kinaseLeft middle cerebral arteryControl levelsTransient cerebral ischaemiaTransient MCA occlusionNeuronal cell injuryPrimary neuronal cell culturesTransient focal ischaemiaElongation factor eEF-2Endoplasmic reticulum calcium pumpEIF-2alpha phosphorylationER calcium homeostasisNeuronal cell culturesS6 kinaseProtein synthesisWestern blot analysisMCA occlusionMCA territoryMin occlusionCerebral artery
1999
The expression of Ca2+/calmodulin-dependent protein kinase I in rat retina is regulated by light stimulation
Tsumura T, Murata A, Yamaguchi F, Sugimoto K, Hasegawa E, Hatase O, Nairn A, Tokuda M. The expression of Ca2+/calmodulin-dependent protein kinase I in rat retina is regulated by light stimulation. Vision Research 1999, 39: 3165-3173. PMID: 10615488, DOI: 10.1016/s0042-6989(99)00063-2.Peer-Reviewed Original Research
1996
Developmental expression of MARCKS and protein kinase C in mice in relation to the exencephaly resulting from MARCKS deficiency
Blackshear P, Lai W, Tuttle J, Stumpo D, Kennington E, Nairn A, Sulik K. Developmental expression of MARCKS and protein kinase C in mice in relation to the exencephaly resulting from MARCKS deficiency. Brain Research 1996, 96: 62-75. PMID: 8922669, DOI: 10.1016/0165-3806(96)00097-1.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBeta-GalactosidaseEmbryonic and Fetal DevelopmentGene Expression Regulation, DevelopmentalGene Expression Regulation, EnzymologicImmunohistochemistryIntracellular Signaling Peptides and ProteinsIsoenzymesMembrane ProteinsMiceMice, Inbred C57BLMice, TransgenicMyristoylated Alanine-Rich C Kinase SubstrateNerve Tissue ProteinsNeural Tube DefectsPhosphorylationProtein Kinase CProteinsRecombinant Fusion ProteinsConceptsProtein kinase CNeural tube closureKinase CPlasma membraneTube closureNeural tubeCranial neural tube closureMajor cellular substrateEmbryonic day 8.5MARCKS deficiencySpecific cell typesE8.5 embryosCranial neural tubeMouse geneFunctional defectsMARCKS proteinPerinatal lethalityMARCKSCellular substratesCranial neurulationMARCKS expressionUnderlying mesenchymeDevelopmental expressionPKC-alphaDay 8.5
1995
Immunochemical localization of calcium/calmodulin‐dependent protein kinase I
Picciotto M, Zoli M, Bertuzzi G, Nairn A. Immunochemical localization of calcium/calmodulin‐dependent protein kinase I. Synapse 1995, 20: 75-84. PMID: 7624832, DOI: 10.1002/syn.890200111.Peer-Reviewed Original ResearchConceptsKinase IProtein kinase ICaM kinase INon-neuronal tissuesImmunoreactive speciesCalmodulin-dependent protein kinase IGlutathione S-transferase fusion proteinCalcium/calmodulin-dependent protein kinase IRat brainDependent protein kinase ISubcellular fractionation studiesRecombinant kinasesRat brain enzymeNeuronal cell bodiesCytosolic localizationProtein kinaseMultiple immunoreactive speciesMajor immunoreactive speciesFusion proteinMultiple neuronal processesWidespread cellMajor immunoreactive bandRat cDNAPrimary structureSynapsin I.Cystic Fibrosis Transmembrane Conductance Regulator Is Found Within Brain Ventricular Epithelium and Choroid Plexus
Hincke M, Nairn A, Staines W. Cystic Fibrosis Transmembrane Conductance Regulator Is Found Within Brain Ventricular Epithelium and Choroid Plexus. Journal Of Neurochemistry 1995, 64: 1662-1668. PMID: 7534334, DOI: 10.1046/j.1471-4159.1995.64041662.x.Peer-Reviewed Original ResearchConceptsCystic fibrosis transmembrane conductance regulatorFibrosis transmembrane conductance regulatorTransmembrane conductance regulatorConductance regulatorCystic fibrosis gene productBrain Ventricular EpitheliumCyclic AMP-dependent phosphorylationGene productsCFTR proteinFine punctaChloride transportersCl- channelsCyclic AMP-elevating agentsEpendymal functionWestern blottingRegulatorVentricular epitheliumPhosphorylationChoroid plexusProteinTransportersRodent brainPunctaRegulationMicrodissection
1994
Subcellular localization of CFTR to endosomes in a ductal epithelium
Webster P, Vanacore L, Nairn A, Marino C. Subcellular localization of CFTR to endosomes in a ductal epithelium. American Journal Of Physiology 1994, 267: c340-c348. PMID: 7521124, DOI: 10.1152/ajpcell.1994.267.2.c340.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell MembraneCystic FibrosisCystic Fibrosis Transmembrane Conductance RegulatorEndocytosisEpitheliumFluorescent Antibody TechniqueImmunohistochemistryMaleMembrane ProteinsMicroscopy, FluorescenceOrganellesRatsRats, Sprague-DawleyReceptors, Cell SurfaceSubcellular FractionsSubmandibular GlandTissue DistributionConceptsCystic fibrosis transmembrane conductance regulatorPlasma membraneFibrosis transmembrane conductance regulatorApical plasma membraneAnti-CFTR antibodiesNormal epithelial cell populationsTransmembrane conductance regulatorCytochemical evidenceReceptor-mediated endocytosisCFTR moleculesEpithelial cell populationsCellular processesSubcellular compartmentsSubcellular localizationEarly endosomesMembrane recyclingConductance regulatorSubcellular distributionSubapical vesiclesApical poleEndosomesCFTR functionImmunoelectron microscopyCell populationsCFTR immunoreactivity
1992
Characterization of the cystic fibrosis transmembrane conductance regulator in a colonocyte cell line.
Cohn J, Nairn A, Marino C, Melhus O, Kole J. Characterization of the cystic fibrosis transmembrane conductance regulator in a colonocyte cell line. Proceedings Of The National Academy Of Sciences Of The United States Of America 1992, 89: 2340-2344. PMID: 1372442, PMCID: PMC48653, DOI: 10.1073/pnas.89.6.2340.Peer-Reviewed Original ResearchConceptsCystic fibrosis transmembrane conductance regulatorFibrosis transmembrane conductance regulatorTransmembrane conductance regulatorConductance regulatorTwo-dimensional phosphopeptide mappingT84 cellsProtein kinase ACell linesProtein kinase CSDS/PAGEPhosphopeptide mappingPhosphorylation sitesProminent substrateCFTR peptidesEquivalent proteinsKinase ASame proteinKinase CTerminal sequenceCell lysatesN-glycanaseProteinAnti-peptide antibodiesImmunoblot signalsCFTR immunoreactivity
1991
Immunocytochemical localization of phosphatase inhibitor‐1 in rat brain
Gustafson E, Girault J, Hemmings H, Nairn A, Greengard P. Immunocytochemical localization of phosphatase inhibitor‐1 in rat brain. The Journal Of Comparative Neurology 1991, 310: 170-188. PMID: 1955581, DOI: 10.1002/cne.903100204.Peer-Reviewed Original ResearchConceptsPhosphatase inhibitor-1Inhibitor-1Intracellular signal transductionPhosphatase 1Protein phosphorylationSignal transductionWidespread roleNumerous immunoreactive cell bodiesSuprachiasmatic nucleusCyclic AMPImmunocytochemical localizationUse of immunocytochemistrySubstantial populationNeurotransmitter regulationDephosphorylationLocalizationNucleusTransductionImmunocytochemical studyCell bodiesPhosphorylationProteinNeuronsRegulationHigh levels