2022
Multi-task deep learning-based survival analysis on the prognosis of late AMD using the longitudinal data in AREDS.
Ghahramani G, Brendel M, Lin M, Chen Q, Keenan T, Chen K, Chew E, Lu Z, Peng Y, Wang F. Multi-task deep learning-based survival analysis on the prognosis of late AMD using the longitudinal data in AREDS. AMIA Annual Symposium Proceedings 2022, 2021: 506-515. PMID: 35308963.Peer-Reviewed Original ResearchConceptsAge-related macular degenerationImage featuresMulti-task learning frameworkConvolutional neural networkVision lossLate age-related macular degenerationEye Disease StudyLearning frameworkNeural networkFundus photographsPatient riskMacular degenerationStandard featuresSevere formComplex featuresSurvival analysisCurrent visitLongitudinal dataDisease StudyHistorical dataRapid paceFeaturesNetworkAREDSPatients
2020
Predicting risk of late age-related macular degeneration using deep learning
Peng Y, Keenan T, Chen Q, Agrón E, Allot A, Wong W, Chew E, Lu Z. Predicting risk of late age-related macular degeneration using deep learning. Npj Digital Medicine 2020, 3: 111. PMID: 32904246, PMCID: PMC7453007, DOI: 10.1038/s41746-020-00317-z.Peer-Reviewed Original ResearchLate age-related macular degenerationAge-related macular degenerationHigher prognostic accuracyClinical standardsMacular degenerationPrognostic accuracyIndependent cohortLargest longitudinal clinical trialsProbability of progressionSight-threatening stagesColor fundus photographsLongitudinal clinical trialsAMD patientsRetinal specialistsClinical trialsFundus photographsSpecialty clinicHigh riskClinical actionsSurvival analysisMedical interventionsIndividual riskAREDS2AREDSExternal validation